Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4272, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769321

RESUMEN

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.


Asunto(s)
Ribosomas Mitocondriales , ARN de Transferencia , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ligandos , Simulación de Dinámica Molecular , ARN Mensajero/metabolismo , ARN Mensajero/genética , Mitocondrias/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Guanosina Difosfato/metabolismo , Poliaminas/metabolismo , Poliaminas/química , Unión Proteica
2.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503168

RESUMEN

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNA Val . The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transition in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide the most complete description so far of the structure and function of the human mitoribosome.

3.
Nucleic Acids Res ; 49(18): 10747-10755, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34530439

RESUMEN

Eukaryotic gene transcription is carried out by three RNA polymerases: Pol I, Pol II and Pol III. Although it has long been known that Pol I can form homodimers, it is unclear whether and how the two other RNA polymerases dimerize. Here we present the cryo-electron microscopy (cryo-EM) structure of a mammalian Pol II dimer at 3.5 Å resolution. The structure differs from the Pol I dimer and reveals that one Pol II copy uses its RPB4-RPB7 stalk to penetrate the active centre cleft of the other copy, and vice versa, giving rise to a molecular handshake. The polymerase clamp domain is displaced and mobile, and the RPB7 oligonucleotide-binding fold mimics the DNA-RNA hybrid that occupies the cleft during active transcription. The Pol II dimer is incompatible with nucleic acid binding as required for transcription and may represent an inactive storage form of the polymerase.


Asunto(s)
ARN Polimerasa II/química , Animales , Microscopía por Crioelectrón , Dimerización , Modelos Moleculares , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Sus scrofa
4.
Cell ; 184(15): 4064-4072.e28, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34133942

RESUMEN

Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.


Asunto(s)
ADN/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Microscopía por Crioelectrón , ADN/ultraestructura , Modelos Biológicos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Polimerasa II/ultraestructura , Eliminación de Secuencia , Factor de Transcripción TFIIH , Factores de Transcripción TFII/metabolismo
5.
Commun Biol ; 4(1): 606, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021257

RESUMEN

Nuclear import of RNA polymerase II (Pol II) involves the conserved factor RPAP2. Here we report the cryo-electron microscopy (cryo-EM) structure of mammalian Pol II in complex with human RPAP2 at 2.8 Å resolution. The structure shows that RPAP2 binds between the jaw domains of the polymerase subunits RPB1 and RPB5. RPAP2 is incompatible with binding of downstream DNA during transcription and is displaced upon formation of a transcription pre-initiation complex.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Microscopía por Crioelectrón/métodos , ADN/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Proteínas Portadoras/genética , Humanos , Mamíferos , Conformación Proteica , ARN Polimerasa II/genética
6.
Cell Rep ; 35(4): 109024, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910005

RESUMEN

Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes. We identify the bacterial antibiotic quinupristin/dalfopristin (Q/D) as an effective suppressor of GSC growth. Q/D also decreases the clonogenicity of GSCs in vitro, consequently dysregulating the cell cycle and inducing apoptosis. Cryoelectron microscopy (cryo-EM) reveals that Q/D binds to the large mitoribosomal subunit, inhibiting mitochondrial protein synthesis and functionally dysregulating OXPHOS complexes. These data suggest that targeting mitochondrial translation could be explored to therapeutically suppress GSC growth in GBM and that Q/D could potentially be repurposed for cancer treatment.


Asunto(s)
Glioblastoma/genética , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos
7.
Nature ; 594(7861): 129-133, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33902108

RESUMEN

Mediator is a conserved coactivator complex that enables the regulated initiation of transcription at eukaryotic genes1-3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate the phosphorylation of RNA polymerase II (Pol II) and promoter escape1-6. Here we prepare a recombinant version of human Mediator, reconstitute a 50-subunit Mediator-PIC complex and determine the structure of the complex by cryo-electron microscopy. The head module of Mediator contacts the stalk of Pol II and the general transcription factors TFIIB and TFIIE, resembling the Mediator-PIC interactions observed in the corresponding complex in yeast7-9. The metazoan subunits MED27-MED30 associate with exposed regions in MED14 and MED17 to form the proximal part of the Mediator tail module that binds activators. Mediator positions the flexibly linked cyclin-dependent kinase (CDK)-activating kinase of the general transcription factor TFIIH near the linker to the C-terminal repeat domain of Pol II. The Mediator shoulder domain holds the CDK-activating kinase subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook domains reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of the CDK7 kinase to allosterically stimulate phosphorylation of the C-terminal domain.


Asunto(s)
Microscopía por Crioelectrón , Complejo Mediador/química , Complejo Mediador/ultraestructura , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Regulación Alostérica , Sitios de Unión , Dominio Catalítico , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , ADN Complementario/genética , Humanos , Complejo Mediador/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo , Iniciación de la Transcripción Genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
8.
Nature ; 594(7861): 124-128, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33902107

RESUMEN

The initiation of transcription is a focal point for the regulation of gene activity during mammalian cell differentiation and development. To initiate transcription, RNA polymerase II (Pol II) assembles with general transcription factors into a pre-initiation complex (PIC) that opens promoter DNA. Previous work provided the molecular architecture of the yeast1-9 and human10,11 PIC and a topological model for DNA opening by the general transcription factor TFIIH12-14. Here we report the high-resolution cryo-electron microscopy structure of PIC comprising human general factors and Sus scrofa domesticus Pol II, which is 99.9% identical to human Pol II. We determine the structures of PIC with closed and opened promoter DNA at 2.5-2.8 Å resolution, and resolve the structure of TFIIH at 2.9-4.0 Å resolution. We capture the TFIIH translocase XPB in the pre- and post-translocation states, and show that XPB induces and propagates a DNA twist to initiate the opening of DNA approximately 30 base pairs downstream of the TATA box. We also provide evidence that DNA opening occurs in two steps and leads to the detachment of TFIIH from the core PIC, which may stop DNA twisting and enable RNA chain initiation.


Asunto(s)
ADN/química , ADN/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Animales , Emparejamiento Base , ADN/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Mamíferos/genética , Modelos Moleculares , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , TATA Box/genética , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética
9.
EMBO J ; 40(6): e106292, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33576519

RESUMEN

Mitoribosomes consist of ribosomal RNA and protein components, coordinated assembly of which is critical for function. We used mitoribosomes from Trypanosoma brucei with reduced RNA and increased protein mass to provide insights into the biogenesis of the mitoribosomal large subunit. Structural characterization of a stable assembly intermediate revealed 22 assembly factors, some of which have orthologues/counterparts/homologues in mammalian genomes. These assembly factors form a protein network that spans a distance of 180 Å, shielding the ribosomal RNA surface. The central protuberance and L7/L12 stalk are not assembled entirely and require removal of assembly factors and remodeling of the mitoribosomal proteins to become functional. The conserved proteins GTPBP7 and mt-EngA are bound together at the subunit interface in proximity to the peptidyl transferase center. A mitochondrial acyl-carrier protein plays a role in docking the L1 stalk, which needs to be repositioned during maturation. Additional enzymatically deactivated factors scaffold the assembly while the exit tunnel is blocked. Together, this extensive network of accessory factors stabilizes the immature sites and connects the functionally important regions of the mitoribosomal large subunit.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas/fisiología , Subunidades Ribosómicas Grandes/metabolismo , Trypanosoma brucei brucei/metabolismo , Microscopía por Crioelectrón , Unión Proteica/fisiología , Conformación Proteica , ARN Ribosómico/genética
10.
Science ; 371(6526): 305-309, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33446560

RESUMEN

To initiate cotranscriptional splicing, RNA polymerase II (Pol II) recruits the U1 small nuclear ribonucleoprotein particle (U1 snRNP) to nascent precursor messenger RNA (pre-mRNA). Here, we report the cryo-electron microscopy structure of a mammalian transcribing Pol II-U1 snRNP complex. The structure reveals that Pol II and U1 snRNP interact directly. This interaction positions the pre-mRNA 5' splice site near the RNA exit site of Pol II. Extension of pre-mRNA retains the 5' splice site, leading to the formation of a "growing intron loop." Loop formation may facilitate scanning of nascent pre-mRNA for the 3' splice site, functional pairing of distant intron ends, and prespliceosome assembly. Our results provide a starting point for a mechanistic analysis of cotranscriptional spliceosome assembly and the biogenesis of mRNA isoforms by alternative splicing.


Asunto(s)
Empalme Alternativo , ARN Polimerasa II/química , ARN Mensajero/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/química , Empalmosomas/química , Animales , Microscopía por Crioelectrón , Humanos , Intrones , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Precursores del ARN/química , ARN Mensajero/química , Empalmosomas/metabolismo , Sus scrofa , Transcripción Genética
11.
Elife ; 92020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32812867

RESUMEN

Translation of mitochondrial messenger RNA (mt-mRNA) is performed by distinct mitoribosomes comprising at least 36 mitochondria-specific proteins. How these mitoribosomal proteins assist in the binding of mt-mRNA and to what extent they are involved in the translocation of transfer RNA (mt-tRNA) is unclear. To visualize the process of translation in human mitochondria, we report ~3.0 Å resolution structure of the human mitoribosome, including the L7/L12 stalk, and eight structures of its functional complexes with mt-mRNA, mt-tRNAs, recycling factor and additional trans factors. The study reveals a transacting protein module LRPPRC-SLIRP that delivers mt-mRNA to the mitoribosomal small subunit through a dedicated platform formed by the mitochondria-specific protein mS39. Mitoribosomal proteins of the large subunit mL40, mL48, and mL64 coordinate translocation of mt-tRNA. The comparison between those structures shows dynamic interactions between the mitoribosome and its ligands, suggesting a sequential mechanism of conformational changes.


Asunto(s)
Mitocondrias/ultraestructura , Proteínas Mitocondriales/biosíntesis , Ribosomas Mitocondriales/ultraestructura , Biosíntesis de Proteínas , Proteínas Ribosómicas/biosíntesis , Células HEK293 , Humanos , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/fisiología , Modelos Moleculares , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética
12.
Sci Adv ; 5(7): eaau4202, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31392261

RESUMEN

Signaling through the receptor tyrosine kinase RET is essential during normal development. Both gain- and loss-of-function mutations are involved in a variety of diseases, yet the molecular details of receptor activation have remained elusive. We have reconstituted the complete extracellular region of the RET signaling complex together with Neurturin (NRTN) and GFRα2 and determined its structure at 5.7-Å resolution by cryo-EM. The proteins form an assembly through RET-GFRα2 and RET-NRTN interfaces. Two key interaction points required for RET extracellular domain binding were observed: (i) the calcium-binding site in RET that contacts GFRα2 domain 3 and (ii) the RET cysteine-rich domain interaction with NRTN. The structure highlights the importance of the RET cysteine-rich domain and allows proposition of a model to explain how complex formation leads to RET receptor dimerization and its activation. This provides a framework for targeting RET activity and for further exploration of mechanisms underlying neurological diseases.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/química , Neurturina/química , Conformación Proteica , Proteínas Proto-Oncogénicas c-ret/química , Microscopía por Crioelectrón , Cisteína/química , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/ultraestructura , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Neurturina/ultraestructura , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Proto-Oncogénicas c-ret/ultraestructura , Transducción de Señal
13.
J Vis Exp ; (140)2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30346389

RESUMEN

The human mitochondria possess a dedicated set of ribosomes (mitoribosomes) that translate 13 essential protein components of the oxidative phosphorylation complexes encoded by the mitochondrial genome. Since all proteins synthesized by human mitoribosomes are integral membrane proteins, human mitoribosomes are tethered to the mitochondrial inner membrane during translation. Compared to the cytosolic ribosome the mitoribosome has a sedimentation coefficient of 55S, half the rRNA content, no 5S rRNA and 36 additional proteins. Therefore, a higher protein-to-RNA ratio and an atypical structure make the human mitoribosome substantially distinct from its cytosolic counterpart. Despite the central importance of the mitoribosome to life, no protocols were available to purify the intact complex from human cell lines. Traditionally, mitoribosomes were isolated from mitochondria-rich animal tissues that required kilograms of starting material. We reasoned that mitochondria in dividing HEK293-derived human cells grown in nutrient-rich expression medium would have an active mitochondrial translation, and, therefore, could be a suitable source of material for the structural and biochemical studies of the mitoribosome. To investigate its structure, we developed a protocol for large-scale purification of intact mitoribosomes from HEK cells. Herein, we introduce nitrogen cavitation method as a faster, less labor-intensive and more efficient alternative to traditional mechanical shear-based methods for cell lysis. This resulted in preparations of the mitoribosome that allowed for its structural determination to high resolution, revealing the composition of the intact human mitoribosome and its assembly intermediates. Here, we follow up on this work and present an optimized and more cost-effective method requiring only ~1010 cultured HEK cells. The method can be employed to purify human mitoribosomal translating complexes, mutants, quality control assemblies and mitoribosomal subunits intermediates. The purification can be linearly scaled up tenfold if needed, and also applied to other types of cells.


Asunto(s)
Membranas Mitocondriales/ultraestructura , Ribosomas Mitocondriales , Células HEK293 , Humanos , Presión Hidrostática , Mitocondrias/ultraestructura , Proteínas Mitocondriales/análisis , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/ultraestructura , Nitrógeno , ARN Ribosómico/análisis
14.
Nat Plants ; 4(8): 615, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30038411

RESUMEN

In the version of this Article originally published, the name of co-author Annemarie Perez Boerema was coded wrongly, resulting in it being incorrect when exported to citation databases. This has been corrected, though no visible changes will be apparent.

15.
Nat Plants ; 4(4): 212-217, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29610536

RESUMEN

Oxygenic photosynthesis produces oxygen and builds a variety of organic compounds, changing the chemistry of the air, the sea and fuelling the food chain on our planet. The photochemical reactions underpinning this process in plants take place in the chloroplast. Chloroplasts evolved ~1.2 billion years ago from an engulfed primordial diazotrophic cyanobacterium, and chlororibosomes are responsible for synthesis of the core proteins driving photochemical reactions. Chlororibosomal activity is spatiotemporally coupled to the synthesis and incorporation of functionally essential co-factors, implying the presence of chloroplast-specific regulatory mechanisms and structural adaptation of the chlororibosome1,2. Despite recent structural information3-6, some of these aspects remained elusive. To provide new insights into the structural specialities and evolution, we report a comprehensive analysis of the 2.9-3.1 Å resolution electron cryo-microscopy structure of the spinach chlororibosome in complex with its recycling factor and hibernation-promoting factor. The model reveals a prominent channel extending from the exit tunnel to the chlororibosome exterior, structural re-arrangements that lead to increased surface area for translocon binding, and experimental evidence for parallel and convergent evolution of chloro- and mitoribosomes.


Asunto(s)
Cloroplastos/química , Proteínas de Plantas/química , Ribosomas/química , Spinacia oleracea/citología , Cloroplastos/metabolismo , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Proteínas de Plantas/metabolismo , Conformación Proteica , Ribosomas/metabolismo
16.
Mol Cell ; 68(5): 847-859.e7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220652

RESUMEN

Human ALC1 is an oncogene-encoded chromatin-remodeling enzyme required for DNA repair that possesses a poly(ADP-ribose) (PAR)-binding macro domain. Its engagement with PARylated PARP1 activates ALC1 at sites of DNA damage, but the underlying mechanism remains unclear. Here, we establish a dual role for the macro domain in autoinhibition of ALC1 ATPase activity and coupling to nucleosome mobilization. In the absence of DNA damage, an inactive conformation of the ATPase is maintained by juxtaposition of the macro domain against predominantly the C-terminal ATPase lobe through conserved electrostatic interactions. Mutations within this interface displace the macro domain, constitutively activate the ALC1 ATPase independent of PARylated PARP1, and alter the dynamics of ALC1 recruitment at DNA damage sites. Upon DNA damage, binding of PARylated PARP1 by the macro domain induces a conformational change that relieves autoinhibitory interactions with the ATPase motor, which selectively activates ALC1 remodeling upon recruitment to sites of DNA damage.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Nucleosomas/enzimología , Dominio Catalítico , Línea Celular Tumoral , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Activación Enzimática , Humanos , Microscopía Electrónica , Simulación de Dinámica Molecular , Mutación , Nucleosomas/química , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Dispersión del Ángulo Pequeño , Electricidad Estática , Relación Estructura-Actividad , Factores de Tiempo , Difracción de Rayos X
18.
IUCrJ ; 4(Pt 6): 723-727, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29123673

RESUMEN

The introduction of direct detectors and the automation of data collection in cryo-EM have led to a surge in data, creating new opportunities for advancing computational processing. In particular, on-the-fly workflows that connect data collection with three-dimensional reconstruction would be valuable for more efficient use of cryo-EM and its application as a sample-screening tool. Here, accelerated on-the-fly analysis is reported with optimized organization of the data-processing tools, image acquisition and particle alignment that make it possible to reconstruct the three-dimensional density of the 70S chlororibosome to 3.2 Šresolution within 24 h of tissue harvesting. It is also shown that it is possible to achieve even faster processing at comparable quality by imposing some limits to data use, as illustrated by a 3.7 Šresolution map that was obtained in only 80 min on a desktop computer. These on-the-fly methods can be employed as an assessment of data quality from small samples and extended to high-throughput approaches.

19.
Nat Commun ; 8(1): 723, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959035

RESUMEN

Formation of 100S ribosome dimer is generally associated with translation suppression in bacteria. Trans-acting factors ribosome modulation factor (RMF) and hibernating promoting factor (HPF) were shown to directly mediate this process in E. coli. Gram-positive S. aureus lacks an RMF homolog and the structural basis for its 100S formation was not known. Here we report the cryo-electron microscopy structure of the native 100S ribosome from S. aureus, revealing the molecular mechanism of its formation. The structure is distinct from previously reported analogs and relies on the HPF C-terminal extension forming the binding platform for the interactions between both of the small ribosomal subunits. The 100S dimer is formed through interactions between rRNA h26, h40, and protein uS2, involving conformational changes of the head as well as surface regions that could potentially prevent RNA polymerase from docking to the ribosome.Under conditions of nutrient limitation, bacterial ribosomes undergo dimerization, forming a 100S complex that is translationally inactive. Here the authors present the structural basis for formation of the 100S complexes in Gram-positive bacteria, shedding light on the mechanism of translation suppression by the ribosome-silencing factors.


Asunto(s)
Ribosomas/química , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Dimerización , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
20.
Nat Struct Mol Biol ; 24(10): 866-869, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28892042

RESUMEN

Mammalian mitochondrial ribosomes (mitoribosomes) have less rRNA content and 36 additional proteins compared with the evolutionarily related bacterial ribosome. These differences make the assembly of mitoribosomes more complex than the assembly of bacterial ribosomes, but the molecular details of mitoribosomal biogenesis remain elusive. Here, we report the structures of two late-stage assembly intermediates of the human mitoribosomal large subunit (mt-LSU) isolated from a native pool within a human cell line and solved by cryo-EM to ∼3-Šresolution. Comparison of the structures reveals insights into the timing of rRNA folding and protein incorporation during the final steps of ribosomal maturation and the evolutionary adaptations that are required to preserve biogenesis after the structural diversification of mitoribosomes. Furthermore, the structures redefine the ribosome silencing factor (RsfS) family as multifunctional biogenesis factors and identify two new assembly factors (L0R8F8 and mt-ACP) not previously implicated in mitoribosomal biogenesis.


Asunto(s)
Ribosomas Mitocondriales/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Microscopía por Crioelectrón , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...