Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 2(2): 462-469, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28357416

RESUMEN

A number of lysine-specific methyltransferases (KMTs) are responsible for the post-translational modification of cellular proteins on lysine residues. Most KMTs typically recognize specific motifs in unstructured, short peptide sequences. However, we have recently discovered a novel KMT that appeared to have a more relaxed sequence specificity, namely, valosin-containing protein (VCP)-KMT, which trimethylates Lys-315 in the molecular chaperone VCP. On the basis of this, here, we explored the possibility of using the VCP-KMT/VCP system to obtain specific lysine methylation of desired sequences grafted onto a VCP-derived scaffold. We generated VCP-derived proteins in which three amino acid residues on each side of Lys-315 had been replaced by various sequences representing lysine methylation sites in histone H3. We found that all of these chimeric proteins were subject to efficient VCP-KMT-mediated methylation in vitro, and methylation was also observed in mammalian cells. Thus, we here describe a versatile system for introducing lysine methylation into a desired peptide sequence, and the approach should be readily expandable for generating combinatorial libraries of methylated sequences.

2.
Nucleic Acids Res ; 45(8): 4370-4389, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28108655

RESUMEN

Lysine methylation is abundant on histone proteins, representing a dynamic regulator of chromatin state and gene activity, but is also frequent on many non-histone proteins, including eukaryotic elongation factor 1 alpha (eEF1A). However, the functional significance of eEF1A methylation remains obscure and it has remained unclear whether eEF1A methylation is dynamic and subject to active regulation. We here demonstrate, using a wide range of in vitro and in vivo approaches, that the previously uncharacterized human methyltransferase METTL21B specifically targets Lys-165 in eEF1A in an aminoacyl-tRNA- and GTP-dependent manner. Interestingly, METTL21B-mediated eEF1A methylation showed strong variation across different tissues and cell lines, and was induced by altering growth conditions or by treatment with certain ER-stress-inducing drugs, concomitant with an increase in METTL21B gene expression. Moreover, genetic ablation of METTL21B function in mammalian cells caused substantial alterations in mRNA translation, as measured by ribosomal profiling. A non-canonical function for eEF1A in organization of the cellular cytoskeleton has been reported, and interestingly, METTL21B accumulated in centrosomes, in addition to the expected cytosolic localization. In summary, the present study identifies METTL21B as the enzyme responsible for methylation of eEF1A on Lys-165 and shows that this modification is dynamic, inducible and likely of regulatory importance.


Asunto(s)
Lisina/metabolismo , Metiltransferasas/genética , Factor 1 de Elongación Peptídica/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Aminoacil-ARN de Transferencia/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Regulación de la Expresión Génica , Guanosina Trifosfato/metabolismo , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Especificidad de Órganos , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
PLoS One ; 10(11): e0141472, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544960

RESUMEN

Valosin-containing protein (VCP) is a homohexameric ATPase involved in a multitude cellular processes and it was recently shown that VCP is trimethylated at lysine 315 by the VCP lysine methyltransferase (VCPKMT). Here, we generated and validated a constitutive knockout mouse by targeting exon 1-4 of the Vcpkmt gene. We show that Vcpkmt is ubiquitously expressed in all tissues examined and confirm the sub-cellular localization to the cytoplasm. We show by (I) mass spectrometric analysis, (II) VCPKMT-mediated in vitro methylation of VCP in cell extracts and (III) immunostaining with a methylation specific antibody, that in Vcpkmt-/- mice the methylation of lysine 315 in VCP is completely abolished. In contrast, VCP is almost exclusively trimethylated in wild-type mice. Furthermore, we investigated the specificity of VCPKMT with in vitro methylation assays using as source of substrate protein extracts from Vcpkmt-/- mouse organs or three human Vcpkmt-/- cell lines. The results show that VCPKMT is a highly specific enzyme, and suggest that VCP is its sole substrate. The Vcpkmt-/- mice were viable, fertile and had no obvious pathological phenotype. Their body weight, life span and acute endurance capacity were comparable to wild-type controls. Overall the results show that VCPKMT is an enzyme required for methylation of K315 of VCP in vivo, but VCPKMT is not essential for development or survival under unstressed conditions.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Crecimiento y Desarrollo , Lisina/metabolismo , Metiltransferasas/metabolismo , Animales , Femenino , Fertilidad , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Masculino , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones , Fenotipo , Especificidad por Sustrato , Análisis de Supervivencia , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA