Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cancer Res Commun ; 4(5): 1174-1188, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626341

RESUMEN

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE: Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Purinas , Animales , Humanos , Ratones , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Metotrexato/farmacología , Purinas/metabolismo , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/uso terapéutico
2.
Gynecol Oncol ; 185: 8-16, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38342006

RESUMEN

OBJECTIVE: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. METHODS: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. RESULTS: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. CONCLUSIONS: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.

3.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352432

RESUMEN

Objective: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. Methods: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. Results: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. Conclusions: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.

4.
bioRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370789

RESUMEN

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation. αKG is required for the activity of αKG-dependent dioxygenases (αKGDDs), and prior work has shown that changes in αKGDD affect demethylases. Using a targeted CRISPR knockout library consisting of 64 αKGDDs, we discovered that Trimethyllysine Hydroxylase Epsilon (TMLHE), the first and rate-limiting enzyme in de novo carnitine synthesis, is necessary for proliferation of HR-proficient cells in the presence of DNA damaging agents. Unexpectedly, αKG-mediated TMLHE-dependent carnitine synthesis was required for histone acetylation, while histone methylation was affected but dispensable. The increase in histone acetylation via αKG-dependent carnitine synthesis promoted HR-mediated DNA repair through site- and substrate-specific histone acetylation. These data demonstrate for the first time that HR-proficiency is mediated through αKG directly influencing histone acetylation via carnitine synthesis and provide a metabolic avenue to induce HR-deficiency and sensitivity to DNA damaging agents.

5.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790404

RESUMEN

Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.

6.
Cancer Gene Ther ; 31(2): 300-310, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030811

RESUMEN

Ovarian cancer is the deadliest gynecological malignancy, and accounts for over 150,000 deaths per year worldwide. The high grade serous ovarian carcinoma (HGSC) subtype accounts for almost 70% of ovarian cancers and is the deadliest. HGSC originates in the fimbria of the fallopian tube and disseminates through the peritoneal cavity. HGSC survival in peritoneal fluid requires cells to resist anoikis (anchorage-independent apoptosis). Most anoikis resistant mechanisms are dependent on microenvironment interactions with cell surface-associated proteins, such as integrins and receptor tyrosine kinases (RTKs). We previously identified the gene CASC4 as a driver of anoikis resistance. CASC4 is predicted to be a Golgi-associated protein that may regulate protein trafficking to the plasma membrane, but CASC4 is largely uncharacterized in literature; thus, we sought to determine how CASC4 confers anoikis resistance to HGSC cells. Mining of publicly available ovarian cancer datasets (TCGA) showed that CASC4 is associated with worse overall survival and increased resistance to platinum-based chemotherapies. For experiments, we cultured three human HGSC cell lines (PEO1, CaOV3, OVCAR3), and a murine HGSC cell line, (ID8) with shRNA-mediated CASC4 knockdowns (CASC4 KD) in suspension, to recapitulate the peritoneal fluid environment in vitro. CASC4 KD significantly inhibited cell proliferation and colony formation ability, and increased apoptosis. A Reverse Phase Protein Assay (RPPA) showed that CASC4 KD resulted in a broad re-programming of membrane-associated proteins. Specifically, CASC4 KD led to decreased protein levels of the RTK Epidermal Growth Factor Receptor (EGFR), an initiator of several oncogenic signaling pathways, leading us to hypothesize that CASC4 drives HGSC survival through mediating recycling and trafficking of EGFR. Indeed, loss of CASC4 led to a decrease in both EGFR membrane localization, reduced turnover of EGFR, and increased EGFR ubiquitination. Moreover, a syngeneic ID8 murine model of ovarian cancer showed that knocking down CASC4 leads to decreased tumor burden and dissemination.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Neoplasias Ováricas/patología , Anoicis/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Línea Celular Tumoral , Receptores ErbB/genética , Factores de Transcripción , Microambiente Tumoral
7.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961201

RESUMEN

DNA damage and cellular metabolism are intricately linked with bidirectional feedback. Two of the main effectors of the DNA damage response and control of cellular metabolism are ATR and mTORC1, respectively. Prior work has placed ATR upstream of mTORC1 during replication stress, yet the direct mechanism for how mTORC1 is activated in this context remain unclear. We previously published that p16-low cells have mTORC1 hyperactivation, which in part promotes their proliferation. Using this model, we found that ATR, but not ATM, is upstream of mTORC1 activation via de novo cholesterol synthesis and is associated with increased lanosterol synthase (LSS). Indeed, p16-low cells showed increased cholesterol abundance. Additionally, knockdown of either ATR or LSS decreased mTORC1 activity. Decreased mTORC1 activity due to ATR knockdown was rescued by cholesterol supplementation. Finally, using both LSS inhibitors and multiple FDA-approved de novo cholesterol synthesis inhibitors, we found that the de novo cholesterol biosynthesis pathway is a metabolic vulnerability of p16-low cells. Together, our data provide new evidence coupling the DNA damage response and cholesterol metabolism and demonstrate the feasibility of using FDA-approved cholesterol-lowering drugs in tumors with loss of p16.

8.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37503008

RESUMEN

The persistence of ovarian cancer stem-like cells (OvCSCs) after chemotherapy resistance has been implicated in relapse. However, the ability of these relatively quiescent cells to produce the robust tumor regrowth necessary for relapse remains an enigma. Since normal stem cells exist in a niche, and tumor-associated macrophages (TAMs) are the highest abundance immune cell within ovarian tumors, we hypothesized that TAMs may influence OvCSC proliferation. To test this, we optimized OvCSC enrichment by sphere culture and in vitro polarization of monocytes to a TAM-like M2 phenotype. Using cocultures that permitted the exchange of only soluble factors, we found that M2 macrophages increased the proliferation of sphere cells. Longer-term exposure (5-7 days) to soluble TAM factors led to retention of some stem cell features by OvCSCs but loss of others, suggesting that TAMs may support an intermediate stemness phenotype in OvCSCs. Although TAM coculture decreased the percentage of OvCSCs surviving chemotherapy, it increased the overall number. We therefore sought to determine the influence of this interaction on chemotherapy efficacy in vivo and found that inhibiting macrophages improved chemotherapy response. Comparing the gene expression changes in OvCSCs cocultured with TAMs to publicly available patient data identified 34 genes upregulated in OvCSCs by exposure to soluble TAM factors whose expression correlates with outcome. Overall, these data suggest that TAMs may influence OvCSC proliferation and impact therapeutic response.

9.
bioRxiv ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37503050

RESUMEN

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.

10.
Cancer Immunol Res ; 11(4): 401-404, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36826438

RESUMEN

Senescent cancer cells alter their microenvironment through secretion of pro-inflammatory cytokines and chemokines called the senescence-associated secretory phenotype (SASP) and upregulation of immunoinhibitory proteins such as CD80 and programmed death-ligand 1. The senescence field is just beginning to explore the role of these changes on antitumor immunity and response to immunotherapy. In this Perspective, we highlight a new study that aimed to determine how senescent breast cancer cells are shielded from immunosurveillance via upregulation of redundant immunoinhibitory proteins in two distinct senescent populations. We also discuss recent articles regarding how the SASP alters the tumor immune microenvironment and response to immunotherapy. As many therapies used to treat cancers induce senescence, future work will need to better refine the composition of the SASP and heterogeneity of senescence in the tumor microenvironment to more completely understand how the immune compartment is regulated by senescent tumors.


Asunto(s)
Senescencia Celular , Neoplasias , Humanos , Fenotipo , Citocinas/metabolismo , Neoplasias/patología , Inmunoterapia , Microambiente Tumoral
11.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36399181

RESUMEN

Macropinocytosis is a nonspecific endocytic process that may enhance cancer cell survival under nutrient-poor conditions. Ataxia-Telangiectasia mutated (ATM) is a tumor suppressor that has been previously shown to play a role in cellular metabolic reprogramming. We report that the suppression of ATM increases macropinocytosis to promote cancer cell survival in nutrient-poor conditions. Combined inhibition of ATM and macropinocytosis suppressed proliferation and induced cell death both in vitro and in vivo. Supplementation of ATM-inhibited cells with amino acids, branched-chain amino acids (BCAAs) in particular, abrogated macropinocytosis. Analysis of ATM-inhibited cells in vitro demonstrated increased BCAA uptake, and metabolomics of ascites and interstitial fluid from tumors indicated decreased BCAAs in the microenvironment of ATM-inhibited tumors. These data reveal a novel basis of ATM-mediated tumor suppression whereby loss of ATM stimulates protumorigenic uptake of nutrients in part via macropinocytosis to promote cancer cell survival and reveal a potential metabolic vulnerability of ATM-inhibited cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias , Pinocitosis , Humanos , Adaptación Fisiológica , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reprogramación Celular , Neoplasias/metabolismo , Microambiente Tumoral , Aminoácidos de Cadena Ramificada/metabolismo , Metabolómica , Animales , Ratones , Línea Celular Tumoral
12.
Cell Rep ; 40(12): 111371, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130512

RESUMEN

ATR kinase is a central regulator of the DNA damage response (DDR) and cell cycle checkpoints. ATR kinase inhibitors (ATRi's) combine with radiation to generate CD8+ T cell-dependent responses in mouse models of cancer. We show that ATRi's induce cyclin-dependent kinase 1 (CDK1)-dependent origin firing across active replicons in CD8+ T cells activated ex vivo while simultaneously decreasing the activity of rate-limiting enzymes for nucleotide biosynthesis. These pleiotropic effects of ATRi induce deoxyuridine (dU) contamination in genomic DNA, R loops, RNA-DNA polymerase collisions, and interferon-α/ß (IFN-α/ß). Remarkably, thymidine rescues ATRi-induced dU contamination and partially rescues death and IFN-α/ß expression in proliferating CD8+ T cells. Thymidine also partially rescues ATRi-induced cancer cell death. We propose that ATRi-induced dU contamination contributes to dose-limiting leukocytopenia and inflammation in the clinic and CD8+ T cell-dependent anti-tumor responses in mouse models. We conclude that ATR is essential to limit dU contamination in genomic DNA and IFN-α/ß expression.


Asunto(s)
Linfocitos T CD8-positivos , Proteína Quinasa CDC2 , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteína Quinasa CDC2/metabolismo , Muerte Celular , Línea Celular Tumoral , ADN , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiuridina , Genómica , Interferón-alfa/metabolismo , Interferón beta , Ratones , Nucleótidos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , ARN , Timidina/farmacología
13.
Commun Biol ; 5(1): 435, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538213

Asunto(s)
Genoma
14.
Am J Physiol Cell Physiol ; 323(1): C125-C132, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584328

RESUMEN

Ovarian cancer is a highly aggressive disease with poor survival rates in part due to diagnosis after dissemination throughout the peritoneal cavity. It is well-known that inflammatory signals affect ovarian cancer dissemination. Inflammation is a hallmark of cellular senescence, a stable cell cycle arrest induced by a variety of stimuli including many of the therapies used to treat patients with ovarian cancer. Indeed, recent work has illustrated that ovarian cancer cells in vitro, mouse models, and patient tumors undergo senescence in response to platinum-based or poly(ADP-ribose) polymerase (PARP) inhibitor therapies, standard-of-care therapies for ovarian cancer. This inflammatory response, termed the senescence-associated secretory phenotype (SASP), is highly dynamic and has pleiotropic roles that can be both beneficial and detrimental in cell-intrinsic and cell-extrinsic ways. Recent data on other cancer types suggest that the SASP promotes metastasis. Here, we outline what is known about the SASP in ovarian cancer and discuss both how the SASP may promote ovarian cancer dissemination and strategies to mitigate the effects of the SASP.


Asunto(s)
Neoplasias Ováricas , Fenotipo Secretor Asociado a la Senescencia , Animales , Puntos de Control del Ciclo Celular , Senescencia Celular , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fenotipo , Poli(ADP-Ribosa) Polimerasas/genética
15.
PLoS One ; 16(5): e0251188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33961649

RESUMEN

DNA polymerases play essential functions in replication fork progression and genome maintenance. DNA lesions and drug-induced replication stress result in up-regulation and re-localization of specialized DNA polymerases η and κ. Although oncogene activation significantly alters DNA replication dynamics, causing replication stress and genome instability, little is known about DNA polymerase expression and regulation in response to oncogene activation. Here, we investigated the consequences of mutant H-RAS G12V overexpression on the regulation of DNA polymerases in h-TERT immortalized and SV40-transformed human cells. Focusing on DNA polymerases associated with the replication fork, we demonstrate that DNA polymerases are depleted in a temporal manner in response to H-RAS G12V overexpression. The polymerases targeted for depletion, as cells display markers of senescence, include the Pol α catalytic subunit (POLA1), Pol δ catalytic and p68 subunits (POLD1 and POLD3), Pol η, and Pol κ. Both transcriptional and post-transcriptional mechanisms mediate this response. Pol η (POLH) depletion is sufficient to induce a senescence-like growth arrest in human foreskin fibroblast BJ5a cells, and is associated with decreased Pol α expression. Using an SV-40 transformed cell model, we observed cell cycle checkpoint signaling differences in cells with H-RasG12V-induced polymerase depletion, as compared to Pol η-deficient cells. Our findings contribute to our understanding of cellular events following oncogene activation and cellular transformation.


Asunto(s)
Reparación del ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Genes ras/genética , Línea Celular , Daño del ADN/genética , Fibroblastos/metabolismo , Humanos
16.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34037658

RESUMEN

Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.


Asunto(s)
Senescencia Celular , Metilación de ADN , Epigénesis Genética , Fibroblastos/enzimología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Interleucina-1alfa/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Puntos de Control del Ciclo Celular , Proliferación Celular , Femenino , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Interleucina-1alfa/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Fluorescente , Papiloma/inducido químicamente , Papiloma/genética , Papiloma/metabolismo , Papiloma/patología , Fenotipo , Vías Secretoras , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol
17.
Life (Basel) ; 11(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918220

RESUMEN

p16INK4A (hereafter called p16) is an important tumor suppressor protein frequently suppressed in human cancer and highly upregulated in many types of senescence. Although its role as a cell cycle regulator is very well delineated, little is known about its other non-cell cycle-related roles. Importantly, recent correlative studies suggest that p16 may be a regulator of tissue immunological surveillance through the transcriptional regulation of different chemokines, interleukins and other factors secreted as part of the senescence-associated secretory phenotype (SASP). Here, we summarize the current evidence supporting the hypothesis that p16 is a regulator of tumor immunity.

18.
Aging (Albany NY) ; 13(3): 3290-3312, 2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33550279

RESUMEN

Oncogene-induced senescence (OIS) is characterized by increased expression of the cell cycle inhibitor p16, leading to a hallmark cell cycle arrest. Suppression of p16 in this context drives proliferation, senescence bypass, and contributes to tumorigenesis. OIS cells are also characterized by the expression and secretion of a widely variable group of factors collectively termed the senescence-associated secretory phenotype (SASP). The SASP can be both beneficial and detrimental and affects the microenvironment in a highly context-dependent manner. The relationship between p16 suppression and the SASP remains unclear. Here, we show that knockdown of p16 decreases expression of the SASP factors and pro-inflammatory cytokines IL6 and CXCL8 in multiple models, including OIS and DNA damage-induced senescence. Notably, this is uncoupled from the senescence-associated cell cycle arrest. Moreover, low p16 expression in both cancer cell lines and patient samples correspond to decreased SASP gene expression, suggesting this is a universal effect of loss of p16 expression. Together, our data suggest that p16 regulates SASP gene expression, which has implications for understanding how p16 modulates both the senescent and tumor microenvironment.


Asunto(s)
Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Lamina Tipo B/metabolismo
19.
Cell Mol Bioeng ; 13(5): 447-461, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33184577

RESUMEN

INTRODUCTION: Bacteria and cancer cells share a common trait-both possess an electronegative surface that distinguishes them from healthy mammalian counterparts. This opens opportunities to repurpose antimicrobial peptides (AMPs), which are cationic amphiphiles that kill bacteria by disrupting their anionic cell envelope, into anticancer peptides (ACPs). To test this assertion, we investigate the mechanisms by which a pathogen-specific AMP, originally designed to kill bacterial Tuberculosis, potentiates the lytic destruction of drug-resistant cancers and synergistically enhances chemotherapeutic potency. MATERIALS AND METHODS: De novo peptide design, paired with cellular assays, elucidate structure-activity relationships (SAR) important to ACP potency and specificity. Using the sequence MAD1, microscopy, spectrophotometry and flow cytometry identify the peptide's anticancer mechanisms, while parallel combinatorial screens define chemotherapeutic synergy in drug-resistant cell lines and patient derived ex vivo tumors. RESULTS: SAR investigations reveal spatial sequestration of amphiphilic regions increases ACP potency, but at the cost of specificity. Selecting MAD1 as a lead sequence, mechanistic studies identify that the peptide forms pore-like supramolecular assemblies within the plasma and nuclear membranes of cancer cells to potentiate death through lytic and apoptotic mechanisms. This diverse activity enables MAD1 to synergize broadly with chemotherapeutics, displaying remarkable combinatorial efficacy against drug-resistant ovarian carcinoma cells and patient-derived tumor spheroids. CONCLUSIONS: We show that cancer-specific ACPs can be rationally engineered using nature's AMP toolbox as templates. Selecting the antimicrobial peptide MAD1, we demonstrate the potential of this strategy to open a wealth of synthetic biotherapies that offer new, combinatorial opportunities against drug resistant tumors.

20.
Heliyon ; 6(9): e05097, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33024871

RESUMEN

While therapies targeting deficiencies in the homologous recombination (HR) pathway are emerging as the standard treatment for high grade serous ovarian cancer (HGSOC) patients, this strategy is limited to the ~50% of patients with a deficiency in this pathway. Therefore, patients with HR-proficient tumors are likely to be resistant to these therapies and require alternative strategies. We found that the HR gene Ataxia Telangiectasia Mutated (ATM) is wildtype and its activity is upregulated in HGSOC compared to normal fallopian tube tissue. Interestingly, multiple pathways related to metabolism are inversely correlated with ATM expression in HGSOC specimens, suggesting that combining ATM inhibition with metabolic drugs would be effective. Analysis of FDA-approved drugs from the Dependency Map demonstrated that ATM-low cells are more sensitive to fenofibrate, a PPARα agonist that affects multiple cellular metabolic pathways. Consistently, PPARα signaling is associated with ATM expression. We validated that combined inhibition of ATM and treatment with fenofibrate is synergistic in multiple HGSOC cell lines by inducing senescence. Together, our results suggest that metabolic changes induced by ATM inhibitors are a potential target for the treatment of HGSOC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...