Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 123(4): 867-876, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36520220

RESUMEN

PURPOSE: To investigate the response of a targeted fraction of (168 metabolites) of the resting serum metabolome to 9 sessions of sprint interval training (SIT). METHODS: Thirty-four recreationally active males provided resting blood samples before (baseline) and 48-72 h after (post) a short-term (9 sessions) cycle ergometer-based SIT intervention. A targeted analysis of 168 metabolites was performed on serum using liquid chromatography mass spectrometry (LC-MS). 160 distinct metabolites were identified and combined with 4 calculated metabolite sums and 3 calculated metabolite ratios creating a panel of 167 individual factors. Data were analysed using principal component analysis and univariate testing of all factors classified into 5 metabolite subgroups. RESULTS: SIT improved anaerobic capacity measured by average power output during a Wingate test (p < 0.01; mean difference = 38 W, 95% confidence interval [26, 51]) and aerobic capacity measured by average power output in a 20 min cycling test (p < 0.01; 17 W [12, 23]). Limited separation was discernible in the targeted serum metabolome between baseline and post-intervention when projected on the first and second principal component(s). However, univariate testing identified 11 fatty acids that had lower concentrations (false discovery rate < 0.05) in post-intervention samples. CONCLUSIONS: These findings demonstrate that this short-term SIT intervention had limited effect on the serum metabolome at rest, but a subfraction of fatty acids are potentially sensitive to short-term exercise training.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Masculino , Humanos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Tolerancia al Ejercicio , Prueba de Esfuerzo
2.
Int J Sport Nutr Exerc Metab ; 33(2): 73-83, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572038

RESUMEN

Endurance training in fasted conditions (FAST) induces favorable skeletal muscle metabolic adaptations compared with carbohydrate feeding (CHO), manifesting in improved exercise performance over time. Sprint interval training (SIT) is a potent metabolic stimulus, however nutritional strategies to optimize adaptations to SIT are poorly characterized. Here we investigated the efficacy of FAST versus CHO SIT (4-6 × 30-s Wingate sprints interspersed with 4-min rest) on muscle metabolic, serum metabolome and exercise performance adaptations in a double-blind parallel group design in recreationally active males. Following acute SIT, we observed exercise-induced increases in pan-acetylation and several genes associated with mitochondrial biogenesis, fatty acid oxidation, and NAD+-biosynthesis, along with favorable regulation of PDK4 (p = .004), NAMPT (p = .0013), and NNMT (p = .001) in FAST. Following 3 weeks of SIT, NRF2 (p = .029) was favorably regulated in FAST, with augmented pan-acetylation in CHO but not FAST (p = .033). SIT induced increases in maximal citrate synthase activity were evident with no effect of nutrition, while 3-hydroxyacyl-CoA dehydrogenase activity did not change. Despite no difference in the overall serum metabolome, training-induced changes in C3:1 (p = .013) and C4:1 (p = .010) which increased in FAST, and C16:1 (p = .046) and glutamine (p = .021) which increased in CHO, were different between groups. Training-induced increases in anaerobic (p = .898) and aerobic power (p = .249) were not influenced by nutrition. These findings suggest some beneficial muscle metabolic adaptations are evident in FAST versus CHO SIT following acute exercise and 3 weeks of SIT. However, this stimulus did not manifest in differential exercise performance adaptations.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino , Resistencia Física/fisiología , Consumo de Oxígeno/fisiología , Adaptación Fisiológica/fisiología , Músculo Esquelético/fisiología , Glucógeno/metabolismo
3.
Am J Physiol Endocrinol Metab ; 321(6): E802-E820, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747202

RESUMEN

Sprint interval training (SIT) is a time-efficient alternative to endurance exercise, conferring beneficial skeletal muscle metabolic adaptations. Current literature has investigated the nutritional regulation of acute and chronic exercise-induced metabolic adaptations in muscle following endurance exercise, principally comparing the impact of training in fasted and carbohydrate-fed (CHO) conditions. Alternative strategies such as exercising in low CHO, protein-fed conditions remain poorly characterized, specifically pertaining to adaptations associated with SIT. Thus, this study aimed to compare the metabolic and performance adaptations to acute and short-term SIT in the fasted state with preexercise hydrolyzed (WPH) or concentrated (WPC) whey protein supplementation. In healthy males, preexercise protein ingestion did not alter exercise-induced increases in PGC-1α, PDK4, SIRT1, and PPAR-δ mRNA expression following acute SIT. However, supplementation of WPH beneficially altered acute exercise-induced CD36 mRNA expression. Preexercise protein ingestion attenuated acute exercise-induced increases in muscle pan-acetylation and PARP1 protein content compared with fasted SIT. Acute serum metabolomic differences confirmed greater preexercise amino acid delivery in protein-fed compared with fasted conditions. Following 3 wk of SIT, training-induced increases in mitochondrial enzymatic activity and exercise performance were similar across nutritional groups. Interestingly, resting muscle acetylation status was downregulated in WPH conditions following training. Such findings suggest preexercise WPC and WPH ingestion positively influences metabolic adaptations to SIT compared with fasted training, resulting in either similar or enhanced performance adaptations. Future studies investigating nutritional modulation of metabolic adaptations to exercise are warranted to build upon these novel findings.NEW & NOTEWORTHY These are the first data to show the influence of preexercise protein on serum and skeletal muscle metabolic adaptations to acute and short-term sprint interval training (SIT). Preexercise whey protein concentrate (WPC) or hydrolysate (WPH) feeding acutely affected the serum metabolome, which differentially influenced acute and chronic changes in mitochondrial gene expression, intracellular signaling (acetylation and PARylation) resulting in either similar or enhanced performance outcomes when compared with fasted training.


Asunto(s)
Adaptación Fisiológica , Ayuno/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Resistencia Física , Proteína de Suero de Leche/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Adolescente , Adulto , Análisis Químico de la Sangre , Suplementos Dietéticos , Método Doble Ciego , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Masculino , Metaboloma/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Resistencia Física/efectos de los fármacos , Resistencia Física/genética , Carrera , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos , Proteína de Suero de Leche/administración & dosificación , Adulto Joven
4.
Exp Physiol ; 106(8): 1659-1670, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33963611

RESUMEN

NEW FINDINGS: What is the central question of this study? Can a custom-designed multiplex gene expression assay be used to quantify expression levels of a targeted group of mitochondrial genes in human skeletal muscle? What is the main finding and its importance? A custom-designed GeXP multiplex assay was developed, and the ability to accurately quantify expression of a targeted set of mitochondrial genes in human skeletal muscle was demonstrated. It holds distinct methodological and practical advantages over other commonly used quantification methods. ABSTRACT: Skeletal muscle is an important endocrine tissue demonstrating plasticity in response to external stimuli, including exercise and nutrition. Mitochondrial biogenesis is a common hallmark of adaptations to aerobic exercise training. Furthermore, altered expression of several genes implicated in the regulation of mitochondrial biogenesis, substrate oxidation and nicotinamide adenine dinucleotide (NAD+ ) biosynthesis following acute exercise underpins longer-term muscle metabolic adaptations. Gene expression is typically measured using real-time quantitative PCR platforms. However, interest has developed in the design of multiplex gene expression assays (GeXP) using the GenomeLab GeXP™ genetic analysis system, which can simultaneously quantify gene expression of multiple targets, holding distinct advantages in terms of throughput, limiting technical error, cost effectiveness, and quantifying gene co-expression. This study describes the development of a custom-designed GeXP assay incorporating the measurement of proposed regulators of mitochondrial biogenesis, substrate oxidation, and NAD+ biosynthetic capacity in human skeletal muscle and characterises the resting gene expression (overnight fasted and non-exercised) signature within a group of young, healthy, recreationally active males. The design of GeXP-based assays provides the capacity to more accurately characterise the regulation of a targeted group of genes with specific regulatory functions, a potentially advantageous development for future investigations of the regulation of muscle metabolism by exercise and/or nutrition.


Asunto(s)
Genes Mitocondriales , Músculo Esquelético , Adaptación Fisiológica , Ejercicio Físico/fisiología , Humanos , Masculino , Músculo Esquelético/fisiología , NAD/metabolismo
5.
Appl Physiol Nutr Metab ; 43(1): 84-93, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28903011

RESUMEN

Sprint interval training (SIT) is reported to improve blood glucose control and may be a useful public health tool. The sirtuins and associated genes are emerging as key players in blood glucose control. This study investigated the interplay between the sirtuin/NAD system and individual variation in insulin sensitivity responses after SIT in young healthy individuals. Before and after 4 weeks of SIT, body mass and fat percentage were measured and oral glucose tolerance tests performed in 20 young healthy participants (7 females). Blood gene expression profiles (all 7 mammalian sirtuin genes and 15 enzymes involved in conversion of tryptophan, bioavailable vitamin B3, and metabolic precursors to NAD). NAD/NADP was measured in whole blood. Significant reductions in body weight and body fat post-SIT were associated with altered lipid profiles, NAD/NADP, and regulation of components of the sirtuin/NAD system (NAMPT, NMNAT1, CD38, and ABCA1). Variable improvements in measured metabolic health parameters were evident and attributed to different responses in males and females, together with marked inter-individual variation in responses of the sirtuin/NAD system to SIT.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad/métodos , Carrera , Sirtuinas/sangre , ADP-Ribosil Ciclasa 1/sangre , ADP-Ribosil Ciclasa 1/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/sangre , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adiposidad , Adulto , Biomarcadores/sangre , Glucemia/metabolismo , Citocinas/sangre , Citocinas/genética , Femenino , Regulación de la Expresión Génica , Humanos , Insulina/sangre , Análisis de los Mínimos Cuadrados , Lípidos/sangre , Masculino , Glicoproteínas de Membrana/sangre , Glicoproteínas de Membrana/genética , NAD/sangre , NADP/sangre , Nicotinamida Fosforribosiltransferasa/sangre , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/sangre , Nicotinamida-Nucleótido Adenililtransferasa/genética , Proyectos Piloto , Análisis de Componente Principal , Factores Sexuales , Sirtuinas/genética , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...