Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 49(5): 911-923, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548828

RESUMEN

The two gonadotropins, FSH and LH, stimulate growth and development of the gonads through gonadal biosynthesis of steroid hormones and growth factors. To date, cDNA sequences encoding gonadotropin subunits have been isolated and characterized from a large number of fish species. Recently, we successfully cloned and characterized gonadotropins (LHß, FSHß, and GPα) from the pituitary glands of the catfish, Heteropneustes fossilis. In the present study, we describe herein the production of recombinant stinging catfish, H. fossilis (hf) FSH (rhfFSH) and LH (rhfLH) using the methylotrophic yeast P. pastoris expression system. We further explored the hypothesis that the recombinant gonadotropins can modulate the hypothalamus-pituitary-ovarian (HPO) axis genes (avt, it, gnrh2, kiss2, and cyp19a1a) and regulate their transcriptional profile and steroid levels in relation to their annual developmental stage during preparatory and pre-spawning phases under in-vitro conditions. We found that the different concentrations of recombinant rhfFSH and rhfLH significantly stimulated E2 levels in the preparatory and prespawning season, and also upregulated gonadal aromatase gene expression in a dose dependent manner. Our results demonstrate that the yeast expression system produced biologically active recombinant catfish gonadotropins, enabling the study of their function in the catfish.


Asunto(s)
Bagres , Animales , Bagres/fisiología , Saccharomyces cerevisiae/metabolismo , Gonadotropinas/genética , Gonadotropinas/farmacología , Gonadotropinas/metabolismo , Esteroides , Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Hormona Luteinizante de Subunidad beta/genética , Hormona Luteinizante de Subunidad beta/metabolismo
2.
Gen Comp Endocrinol ; 323-324: 114035, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395227

RESUMEN

The Nile perch (np; Lates niloticus) is a freshwater teleost species with a potential for aquaculture in freshwater surroundings. However, wild-caught breeders have persistently failed to spawn spontaneously in captivity. Cloning of the gonadotropin subunits and analysing seasonal variation in reproductive hormone levels for a 1-year period were done to gain knowledge on the physiological basis underlying the reproductive biology of np. The ß-follicle-stimulating hormone (FSH-ß) and ß-luteinizing hormone (LH-ß) subunits and their common α-glycoprotein (Gph-α) subunit were cloned using 3' and 5' RACE-PCR. The nucleotide sequences of the npgph-α, npfsh-ß, and nplh-ß subunits were 664, 580 and 675 nucleotides in length, encoding peptides of 124, 120 and 148 amino acids, respectively. The deduced amino acid sequence of each mature subunit showed high similarity with its counterparts in other teleost. Sequence analysis showed that npFSH-ß is more similar to higher vertebrate FSH-ßs than to higher vertebrate LH-ßs. Heterologous immunoassay was calibrated to analyse pituitary LH levels. While the LH immunoassay showed parallelism of npLH with that of tilapia (ta), no parallelism for FSH was found. Levels of pituitary LH were higher in females at gonadal stages of vitellogenic oocytes, mature secondary oocytes and mature tertiary oocytes with migrating nucleus than in pre-vitellogenic oocytes and early and late perinucleolus oocytes. Using competitive steroid ELISA, variations in the levels of the steroid hormones 11-ketotestosterone (11-KT) in males and E2 in females were characterized in relation to month and reproductive index of Nile perch. Our findings show that in females, gonadosomatic index and plasma E2 were highly correlated (R2 = 0.699, n = 172) and peaked from September to November while in males, the gonadosomatic index and plasma 11-KT peaked from October to November. In female fish, both steroid hormones were detected in the plasma but greatly varied in concentrations. E2 in particular, increased with the developmental stage of the gonads. The levels of steroid hormones, E2 and 11-KT in females and males respectively increased with fish size (total lengths) and suggest that females mature at a body length of 40-59 cm than their counter part males that mature at a total length of 60-70 cm. Taken together, we describe seasonal endocrine differences in wild-caught adult Nile perch which could potentially be exploited to manipulate the reproductive axis in cultured breeders.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta , Percas , Animales , Clonación Molecular , Femenino , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Hormona Luteinizante de Subunidad beta/genética , Hormona Luteinizante de Subunidad beta/metabolismo , Masculino , Hipófisis/metabolismo , Estaciones del Año , Esteroides/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 823818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399936

RESUMEN

In vertebrate reproduction, metabolism, growth and development, essential roles are played by glycoprotein hormones, such as follicle-stimulating hormone (FSH), luteinizing hormone (LH) and thyroid-stimulating hormone (TSH), all of which are heterodimers consisting of two subunits, a structurally identical alpha subunit, and a variable beta subunit, which provides specificity. A 'new' glycoprotein hormone heterodimer identified in both vertebrates and invertebrates, including decapod crustaceans, was shown to be composed of the glycoprotein alpha 2 (GPA2) and glycoprotein beta 5 (GPB5) subunits. The putative receptor for GPA2/GPB5 in invertebrates is the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1). In this study in the giant freshwater prawn, Macrobrachium rosenbergii, we identified and characterized the GPA2 (MrGPA2), GPB5 (MrGPB5) and LGR1 (MrLGR1) encoding genes and revealed their spatial expression patterns in female animals. Loss-of-function RNA interference (RNAi) experiments in M. rosenbergii females demonstrated a negative correlation between MrGPA2/MrGPB5 silencing and MrLGR1 transcript levels, suggesting a possible ligand-receptor interaction. The relative transcript levels of M. rosenbergii vitellogenin (MrVg) in the hepatopancreas were significantly reduced following MrGPA2/MrGPB5 knockdown. MrLGR1 loss-of-function induced MrVg receptor (MrVgR) transcript levels in the ovary and resulted in significantly larger oocytes in the silenced group compared to the control group. Our results provide insight into the possible role of GPA2/GPB5-LGR1 in female reproduction, as shown by its effect on MrVg and MrVgR expression and on the oocyte development. Here, we suggest that the GPA2/GPB5 heterodimer act as a gonad inhibiting factor in the eyestalk-hepatopancreas-ovary endocrine axis in M. rosenbergii.


Asunto(s)
Decápodos , Glicoproteínas , Hormonas , Secuencia de Aminoácidos , Animales , Decápodos/genética , Femenino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hormonas/genética , Hormonas/metabolismo
4.
Gen Comp Endocrinol ; 281: 41-48, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31102581

RESUMEN

The Acanthaster planci species-complex [Crown-of-Thorns Seastar (COTS)] are highly fecund echinoderms that exhibit population outbreaks on coral reef ecosystems worldwide, including the Australian Great Barrier Reef. A better understanding of the COTS molecular biology is critical towards efforts in controlling outbreaks and assisting reef recovery. In seastars, the heterodimeric relaxin-like gonad stimulating peptide (RGP) is responsible for triggering a neuroendocrine cascade that regulates resumption of oocyte meiosis prior to spawning. Our comparative RNA-seq analysis indicates a general increase in RGP gene expression in the female radial nerve cord during the reproductive season. Also, the sensory tentacles demonstrate a significantly higher expression level than radial nerve cord. A recombinant COTS RGP, generated in a yeast expression system, is highly effective in inducing oocyte germinal vesicle breakdown (GVBD), followed by ovulation from ovarian fragments. The findings of this study provide a foundation for more in-depth molecular analysis of the reproductive neuroendocrine physiology of the COTS and the RGP.


Asunto(s)
Oocitos/metabolismo , Ovario/metabolismo , Ovulación/fisiología , Proteínas Recombinantes/farmacología , Relaxina/farmacología , Estrellas de Mar/fisiología , Animales , Bioensayo , Femenino , Oocitos/efectos de los fármacos , Ovario/efectos de los fármacos , Ovulación/efectos de los fármacos , Relaxina/genética , Relaxina/metabolismo , Estrellas de Mar/efectos de los fármacos , Estrellas de Mar/genética
5.
Gen Comp Endocrinol ; 263: 51-61, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29649418

RESUMEN

Although previous studies suggest membrane progesterone receptor alpha (mPRα/Paqr7) mediates 17, 20ß-dihydroxy-4-pregnen-3-one (DHP) induction of oocyte maturation (OM) in zebrafish, critical information needed to establish mPRα as the receptor mediating OM is lacking. The relative potencies of progestins and specific mPRα agonists in inducing OM matched their relative binding affinities for zebrafish mPRα, supporting its role in OM. Microinjection of pertussis toxin blocked DHP induction of OM and the progestin-induced decrease in cyclic AMP levels, suggesting mPRα activates an inhibitory G protein (Gi). Microinjection of morpholino antisense oligonucleotides to zebrafish pgrmc1 blocked induction of OM by DHP which was accompanied by decreased levels of Pgrmc1 and mPRα on the oocyte plasma membranes. Similarly, treatment of denuded oocytes with a PGRMC1 inhibitor, AG205, blocked the gonadotropin-induced increase in plasma membrane mPRα levels and attenuated DHP induction of OM. Co-incubation with two inhibitors of epidermal growth factor Erbb2, ErbB2 inhibitor II and AG 879, prevented induction of OM by DHP, indicating the likely involvement of Erbb2 in mPRα-mediated signaling. Treatment with AG205 reversed the inhibitory effects of the Erbb2 inhibitors on OM and also inhibited insulin-like growth factor-1 induction of OM. Close associations between Pgrmc1 and mPRα, and between Pgrmc1 and Erbb2 were detected in zebrafish oocytes with in situ proximity ligation assays. The results suggest progestin induction of OM in zebrafish is mediated through an mPRα/Gi/Erbb2 signaling pathway that requires Pgrmc1 for expression of mPRα on oocyte membranes and that Pgrmc1 also is required for induction of OM through Erbb2.


Asunto(s)
Proteínas de la Membrana/fisiología , Oogénesis/genética , Receptores de Progesterona/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , AMP Cíclico/metabolismo , Embrión no Mamífero , Femenino , Oligonucleótidos Antisentido/farmacología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Oogénesis/efectos de los fármacos , Receptores de Progesterona/antagonistas & inhibidores , Receptores de Progesterona/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Pez Cebra/embriología
6.
Gen Comp Endocrinol ; 264: 28-38, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183794

RESUMEN

Two gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), are important players in the hypothalamic-pituitary-gonadal axis of vertebrates. In the present work, we describe the construction of recombinant (r) common carp (Cyprinus carpio; c) FSH (rcFSH) and LH (rcLH) using the Pichia pastoris system, the generation of specific antibodies against their respective ß subunits, and their use in the development and validation of specific ELISAs. We produced carp rLH and rFSH as single-chain polypeptides, wherein the GTH subunit α was joined with either cLHß or cFSHß mature protein-coding sequences to form a fusion gene that encodes a yoked polypeptide, in which the GTH ß-subunit forms the N-terminal part and the α-subunit forms the C-terminal part. Competitive ELISAs were developed, using primary antibodies against rcLHß or rcFSHß, respectively, and rcLHßα or rcFSHßα for the standard curves. The standard curves for cLH paralleled those of pituitary extracts of the homologous fish and also those of other cyprinids species like the black carp (Mylopharyngodon piceus), goldfish (Carassius auratus), silver carp (Hypophthalmichthys molitrix), and grass carp (Ctenopharyngodon idella). We used the specific antibodies raised against cFSH and cLH to study the specific localization of the different GTH cells in the pituitary of carp and its taxonomic relative species - the zebrafish. Both FSH and LH cells are localized in the center of the proximal pars distalis enveloping both sides of the neurohypophysis. LH cells form a continuous population throughout the PPD, while FSH cells are more loosely distributed throughout the same area and form small aggregations. Marked annual changes were encountered in gonadosomatic index (GSI), follicle diameter, mRNA levels and protein levels of FSH and LH. From September to November, all fish had low GSI, and the ovary contained previtellogenic follicles. From December, the GSI level increased and remained high until March, the follicular diameter reached its maximum in January, where the ovary contained large fully grown follicles. Thereafter, spawning occurred through March and April and ended in May, and GSI level and follicle diameter increased again; and the ovary contained mid-vitellogenic follicles. LH pituitary content and mRNA levels were low at pre- and early vitellogenesis, increasing gradually during this process to reach a peak of LH mRNA levels in mid vitellogenic ovary and a peak of LH content in fully grown ovarian follicles. However, no significant change occurred in FSH pituitary content and mRNA levels in vitellogenic fish and in fish during final maturation stages. A dramatic difference was found in the total content of each gonadotropin in the pituitary, with higher LH than FSH. Moreover, follicle diameter was positively and significantly correlated with LH pituitary content and its transcript levels - but not with the pituitary content or mRNA levels of FSH. Taken together, these results indicate that in carp, LH alone is sufficient to regulate both vitellogenesis and final oocyte maturation while FSH may have another, yet undefined role.


Asunto(s)
Carpas/metabolismo , Gonadotropinas/química , Gonadotropinas/metabolismo , Hipófisis/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Anticuerpos/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Hormona Luteinizante/metabolismo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados
7.
Gen Comp Endocrinol ; 241: 41-49, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26965950

RESUMEN

Biologically active recombinant yellowtail kingfish follicle stimulating hormone (rytkFsh) was produced in yeast Pichia pastoris and its biological activity was demonstrated by both in-vitro and in-vivo bioassays. Incubation of ovarian and testicular fragments with the recombinant hormone stimulated E2 and 11-KT secretion, respectively. In-vivo trial in immature female YTK resulted in a significant increase of plasma E2 levels and development of oocytes. In males at the early stages of puberty, advancement of spermatogenesis was observed, however plasma 11-KT levels were reduced when administered with rytkFsh.


Asunto(s)
Hormona Folículo Estimulante/sangre , Hormona Folículo Estimulante/farmacología , Oogénesis/efectos de los fármacos , Perciformes/fisiología , Proteínas Recombinantes/farmacología , Maduración Sexual/efectos de los fármacos , Animales , Células Cultivadas , Estradiol/sangre , Femenino , Masculino , Perciformes/sangre , Pichia
8.
J Endocrinol ; 232(3): 391-402, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27999090

RESUMEN

Currently, spawning is induced in carp species by carp pituitary extract (CPE) and a combination of synthetic agonist of GnRH combined with a dopamine antagonist. The main goal of this study was the production of recombinant gonadotropins (GtHs) on a large scale to serve as an alternative to currently used agents. We produced carp (c) recombinant (r) Lh as a single chain in the methylotrophic yeast Pichia pastoris Lha subunit was joined with Lhb subunit with a flexible linker of three glycine-serine repeats and six Histidines to form a mature protein, the ß-subunit formed the N-terminal part and the α-subunit formed the C-terminal part. The ability of the rcLh to elicit biological response was tested by in vivo stimulation of estradiol (E2) and 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) and by its in vivo potency to induce ovulation and spawning induction. rcLh tested in this work significantly enhanced both E2 and DHP secretion in a dose-dependent manner similar to the results obtained with CPE. E2 levels showed a moderate rise following the priming injection and a subsequent decrease during the rest of the trial. DHP levels were only increased after the resolving injection, approximately 5 h before spawning. At the highest dose of rcLh (350 µg/kg BW), the recombinant protein was more efficient than CPE in terms of both spawning success and fertilization rate. It is shown here that rcLh can elicit the secretion of DHP in vivo and actually trigger spawning. These novel findings introduce the potential of utilizing recombinant gonadotropins in aquaculture.


Asunto(s)
Estradiol/metabolismo , Hidroxiprogesteronas/metabolismo , Hormona Luteinizante/farmacología , Ovulación/efectos de los fármacos , Proteínas Recombinantes/farmacología , Animales , Carpas , Femenino
9.
PLoS One ; 11(9): e0162344, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27622546

RESUMEN

In the reproduction process of male and female fish, pituitary derived gonadotropins (GTHs) play a key role. To be able to specifically investigate certain functions of Luteinizing (LH) and Follicle stimulating hormone (FSH) in Russian sturgeon (Acipenser gueldenstaedtii; st), we produced recombinant variants of the hormones using the yeast Pichia pastoris as a protein production system. We accomplished to create in vitro biologically active heterodimeric glycoproteins consisting of two associated α- and ß-subunits in sufficient quantities. Three dimensional modelling of both GTHs was conducted in order to study the differences between the two GTHs. Antibodies were produced against the unique ß-subunit of each of the GTHs, in order to be used for immunohistochemical analysis and to develop an ELISA for blood and pituitary hormone quantification. This detection technique revealed the specific localization of the LH and FSH cells in the sturgeon pituitary and pointed out that both cell types are present in substantially higher numbers in mature males and females, compared to immature fish. With the newly attained option to prevent cross-contamination when investigating on the effects of GTH administration, we compared the steroidogeneic response (estradiol and 11-Keto testosterone (11-KT) in female and males, respectively) of recombinant stLH, stFSH, and carp pituitary extract in male and female sturgeon gonads at different developmental stages. Finally, we injected commercially available gonadotropin releasing hormones analog (GnRH) to mature females, and found a moderate effect on the development of ovarian follicles. Application of only testosterone (T) resulted in a significant increase in circulating levels of 11-KT whereas the combination of GnRH + T did not affect steroid levels at all. The response pattern for estradiol demonstrated a similar situation. FSH levels showed significant increases when GnRH + T was administered, while no changes were present in LH levels.


Asunto(s)
Peces/fisiología , Gonadotropinas Hipofisarias/fisiología , Esteroides/fisiología , Animales , Ensayo de Inmunoadsorción Enzimática , Estradiol/metabolismo , Femenino , Hormona Folículo Estimulante/química , Hormona Folículo Estimulante/farmacología , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/farmacología , Gonadotropinas Hipofisarias/química , Hormona Luteinizante/química , Hormona Luteinizante/farmacología , Masculino , Modelos Moleculares , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/fisiología , Hipófisis/efectos de los fármacos , Hipófisis/fisiología , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Testículo/efectos de los fármacos , Testículo/fisiología , Testosterona/análogos & derivados , Testosterona/metabolismo , Testosterona/farmacología
10.
Integr Comp Biol ; 56(6): 1144-1156, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27252217

RESUMEN

The decapod Crustacea are the most species-rich order of the Crustacea and include some of the most charismatic and highly valued commercial species. Thus the decapods draw a significant research interest in relation to aquaculture, as well as gaining a broader understanding of these species' biology. However, the diverse physiology of the group considered with the lack of a model species have presented an obstacle for comparative analyses. In reflection of this, the recent integration of comparative transcriptomics has rapidly advanced our understanding of key regulatory pathways and developmental phenomena, an example being our understanding of sexual development. We discuss our work in the Eastern spiny lobster, Sagmariasus verreauxi, in the context of what is currently known about male sexual development in the decapods, highlighting the importance of transcriptomic techniques in achieving our recent advancements. We describe the progression made in our understanding of male sexual differentiation and maturation, as mediated by the insulin-like androgenic gland hormone (IAG), integrating the role of regulatory binding proteins (IGFBPs), a tyrosine kinase insulin receptor (TKIR), as well as the upstream effect of neuroendocrine hormones (GIH and MIH). We then consider the less well understood mechanism of male sex determination, with an emphasis on what we believe to be the key regulatory factors, the Dsx- and mab-3-related transcription factors (Dmrts). Finally, we discuss the function of the antennal gland (AnG) in sexual development, relating to the emergence of male-biased upregulation in the AnG in later sexual maturation and the sexually dimorphic expression of two key genes Sv-TKIR and Sv-Dmrt1 We then present the AnG as a case study to illustrate how comparative transcriptomic techniques can be applied to guide preliminary analyses, like the hypothesis that the AnG may function in pheromone biosynthesis. In summary, we describe the power of transcriptomics in facilitating the progress made in our understanding of male sexual development, as illustrated by the commercial decapod species, S. verreauxi Considering future directions, we suggest that the integration of multiple omics-based techniques offers the most powerful tool to ensure we continue to piece together the biology of the important group of decapod Crustacea.


Asunto(s)
Palinuridae/crecimiento & desarrollo , Palinuridae/genética , Diferenciación Sexual/genética , Desarrollo Sexual/genética , Transcriptoma , Animales , Masculino
11.
Gen Comp Endocrinol ; 229: 8-18, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26883686

RESUMEN

In crustaceans the insulin-like androgenic gland hormone (IAG) is responsible for male sexual differentiation. To date, the biochemical pathways through which IAG exerts its effects are poorly understood and could be elucidated through the production of a functional recombinant IAG (rIAG). We have successfully expressed glycosylated, biologically active IAG using the Pichia pastoris yeast expression system. We co-expressed recombinant single-chain precursor molecules consisting of the B and A chains (the mature hormone) tethered by a flexible linker, producing rIAGs of the following commercially important species: Eastern spiny lobster Sagmariasus verreauxi (Sv), redclaw crayfish Cherax quadricarinatus (Cq) and giant freshwater prawn Macrobrachium rosenbergii (Mr). We then tested the biological activity of each, through the ability to increase phosphorylation in the testis; both Sv and Cq rIAGs significantly elevated phosphorylation specific to their species, and in a dose-dependent manner. Mr rIAG was tested on Macrobrachium australiense (Ma), eliciting a similar response. Moreover, using bioinformatics analyses of the de novo assembled spiny lobster transcriptome, we identified a spiny lobster tyrosine kinase insulin receptor (Sv-TKIR). We validated this discovery with a receptor activation assay in COS-7 cells expressing Sv-TKIR, using a reporter SRE-LUC system designed for RTKs, with each of the rIAG proteins acting as the activation ligand. Using recombinant proteins, we aim to develop specific tools to control sexual development through the administration of IAG within the critical sexual differentiation time window. The biologically active rIAGs generated might facilitate commercially feasible solutions for the long sought techniques for sex-change induction and monosex population culture in crustaceans and shed new light on the physiological mode of action of IAG in crustaceans.


Asunto(s)
Andrógenos/metabolismo , Palinuridae/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Testículo/crecimiento & desarrollo , Animales , Masculino , Fosforilación , Diferenciación Sexual , Desarrollo Sexual
12.
J Endocrinol ; 225(1): 59-68, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25720537

RESUMEN

The regulation of receptor trafficking to the cell surface and its effect on responses of target cells to growth factors and hormones remain poorly understood. Initial evidence has been recently obtained using cancer cells that surface expression of the epidermal growth factor receptor (EGFR) is dependent on its association with progesterone receptor membrane component 1 (PGRMC1). Estrogen inhibition of oocyte maturation (OM) in zebrafish is mediated through G-protein-coupled estrogen membrane receptor 1 (Gper1) and involves activation of Egfr. Therefore, in this study, the potential roles of Pgrmc1 in the cell surface expression and functions of Egfr in normal cells were investigated in this in vitro OM model of Egfr action using an inhibitor of PGMRC1 signaling, AG205. A single ∼60 kDa protein band, which corresponds to the size of the Pgrmc1 dimer, was detected on plasma membranes of fully grown oocytes by western blotting. Co-treatment with the PGRMC1 inhibitor AG205 (20 µM) blocked the inhibitory effects of 100 nM estradiol-17ß and the GPER agonist, G-1, on spontaneous maturation of denuded zebrafish oocytes. Moreover, reversal of these estrogen effects on OM by the EGFR inhibitors AG1478 and AG825 (50 µM) was prevented by co-incubation with the PGRMC1 inhibitor. Inhibition of Pgrmc1 signaling with AG205 also caused a decrease in Egfr-dependent signaling and Egfr expression on oocyte cell membranes. These results indicate that maintenance of Pgrmc1 signaling is required for Egfr expression on zebrafish oocyte cell membranes and for conserving the functions of Egfr in maintaining meiotic arrest through estrogen activation of Gper.


Asunto(s)
Receptores ErbB/metabolismo , Meiosis/fisiología , Oocitos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Animales , Receptores ErbB/genética , Femenino , Regulación de la Expresión Génica/fisiología , Ovario/fisiología , Receptores de Estrógenos/genética , Receptores de Progesterona/genética , Pez Cebra
13.
Gen Comp Endocrinol ; 215: 76-87, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25218129

RESUMEN

This study reports, for the first time in any of the commercially important decapod species, the identification of an insulin-like peptide (ILP), distinct from the androgenic gland hormone. Bioinformatics analysis of the de novo assembled spiny lobster, (Sagmariasus verreauxi) transcriptome, allowed identification of Sv-ILP1 as well as eight binding proteins. Binding proteins were termed as Sv-IGFBP, due to homology with the vertebrate insulin-like growth-factor binding protein and Sv-SIBD1-7, single insulin-binding domain protein (SIBD), similar to those identified in other invertebrate species. Sv-ILP1 was found to be expressed in the eyestalk, gonads and antennal gland of both sexes and to a lesser extent in male muscle, androgenic gland and hepatopancreas. The expression profiles of each binding protein were found to vary across tissues, with Sv-SIBD5, 6 and 7 showing higher expression in the gonad, demonstrated by PCR and digital gene expression. Further spatial investigations, using in-situ hybridisation, found Sv-ILP1 to be expressed in the neurosecretory cells of the thoracic ganglia, in keeping with the tissue expression of Drosophila ILP7 (DILP7). This correlative tissue expression, considered with the phylogenetic clustering of Sv-ILP1 and DILP7, suggests Sv-ILP1 to be a DILP7 orthologue. The broad expression of Sv-ILP1 strongly suggests that ILPs have a role beyond that of masculinisation in decapods. The function of these novel peptides may have application in enhancing aquaculture practices in the commercially important decapod species.


Asunto(s)
Biomarcadores/metabolismo , Proteínas de Drosophila/metabolismo , Perfilación de la Expresión Génica , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Neuropéptidos/metabolismo , Palinuridae/genética , Hormonas Peptídicas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Hibridación in Situ , Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Palinuridae/clasificación , Palinuridae/crecimiento & desarrollo , Hormonas Peptídicas/genética , Filogenia , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
14.
Sex Dev ; 9(6): 338-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26927314

RESUMEN

The Eastern spiny lobster, Sagmariasus verreauxi, is commercially important in fisheries, with growing aquaculture potential, driving an interest to better understand male sexual differentiation. Amongst the Decapoda, the androgenic gland (AG) and the insulin-like androgenic gland hormone (IAG) have a well-defined function in male sexual differentiation. However, IAG is not a sex determinant and therefore must be considered as part of a broader, integrated pathway. This work uses a transcriptomic, multi-tissue approach to provide an integrated description of male-biased expression as mediated through the AG. Transcriptomic analyses demonstrate that IAG expression is stage- and eyestalk-regulated (low in immature, high in mature and 6-times higher in hypertrophied glands), with IAG being the predominant AG-specific factor. The low expression of this key factor in immature males suggests the involvement of other tissues in male sexual differentiation. Across tissues, the gonad (87.8%) and antennal gland (73.5%) show the highest male-biased differential expression of transcripts and also express 4 sex-determination regulators, known as Dmrts, with broader expression of Sv-Sxl and Sv-TRA-2. In order to better understand male sexual differentiation, tissues other than the AG must also be considered. This research highlights the gonad and antennal gland as showing significant male-biased expression patterns, including the Sv-Dmrts.


Asunto(s)
Palinuridae/crecimiento & desarrollo , Palinuridae/genética , Desarrollo Sexual/genética , Andrógenos/metabolismo , Animales , Glándulas Endocrinas/crecimiento & desarrollo , Glándulas Endocrinas/metabolismo , Perfilación de la Expresión Génica , Genitales Masculinos/crecimiento & desarrollo , Genitales Masculinos/metabolismo , Masculino , Palinuridae/metabolismo , Transcriptoma
15.
Gen Comp Endocrinol ; 207: 28-33, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24954479

RESUMEN

In fish, both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play important roles in reproduction. Here we explored the structure and differential specificity of tilapia (t) gonadotropins (GTHs) to delineate their physiological relevance and the nature of their regulation. We generated structural models of tGTHs and GTH receptors (R) that enabled us to better understand the hormone-receptor interacting region. In tilapia, FSH release is under the control of the hypothalamic decapeptide GnRH, an effect that was abolished by specific bioneutralizing antisera [anti-recombinant (r) tFSHß]. These antisera also reduced the basal secretion and delayed GnRH-stimulated production of 11-ketotestosterone (11KT), and dramatically reduced LH levels. Immunoneutralization of tLH using anti-rtLHß significantly reduced its GnRH-stimulated levels. Basal 11KT and FSH levels were also reduced. Taken together, these results suggest a feedback mechanism between FSH and LH release in tilapia.


Asunto(s)
Anticuerpos/farmacología , Cíclidos/metabolismo , Hormona Folículo Estimulante/inmunología , Hormona Liberadora de Gonadotropina/farmacología , Hormona Luteinizante/inmunología , Testosterona/análogos & derivados , Animales , Cíclidos/crecimiento & desarrollo , Ensayo de Inmunoadsorción Enzimática , Retroalimentación Fisiológica/efectos de los fármacos , Hormona Folículo Estimulante/química , Hormona Folículo Estimulante/metabolismo , Hormona Luteinizante/química , Hormona Luteinizante/metabolismo , Modelos Moleculares , Conformación Proteica , Reproducción/fisiología , Testosterona/metabolismo
16.
Gen Comp Endocrinol ; 200: 18-26, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24530629

RESUMEN

Progestin hormones stimulate sperm motility in teleosts but their mechanisms of action remain unclear. Preliminary results suggest that progestin upregulation of sperm motility in southern flounder and several other marine species is mediated through a sperm membrane progestin receptor with the characteristics of membrane progestin receptor alpha (mPRα, also known as Paqr7b). The hypothesis that mPRα has an important role in progestin regulation of southern flounder sperm motility and fertility was tested in the present study. The specific mPRα agonist, 10-ethenyl-19-norprogesterone (Org OD 02-0, 100nM), mimicked the stimulatory actions of the endogenous progestin, 17,20ß, 21-trihydroxy-4-pregnen-3-one (20ß-S, 100nM) on flounder sperm motility. The concentration of the mPRα protein on sperm plasma membranes was positively correlated to sperm motility as well as the responsiveness of sperm to progestin stimulation. Acute in vitro progestin treatment of sperm with high mPRα protein levels increased both sperm motility and fertilization success in strip spawning experiments. However, in vitro progestin treatments were ineffective on sperm with low receptor abundance. A single injection of the superactive gonadotropin-releasing hormone analog (LHRHa, 100µg/kg) increased sperm motility and fertilization success in strip spawning experiments 72h post-injection which was accompanied by an increase in mPRα protein concentrations on sperm plasma membranes. These results provide clear evidence that southern flounder sperm hypermotility is mediated through mPRα. Stimulatory G proteins, but not inhibitory G proteins, were identified in flounder sperm plasma membrane fractions. The finding that treatment of flounder sperm plasma membrane fractions with either 20ß-S or Org OD 02-0 increases cAMP levels suggests progestins stimulate flounder sperm motility by activating an mPRα/stimulatory G protein/membrane adenylyl cyclase pathway. A similar mechanism has been identified in Atlantic croaker, suggesting that the signaling pathway mediated by mPRα in sperm is highly conserved in advanced teleosts. Collectively, our results indicate that progestin-stimulation of flounder sperm hypermotility and fertility is dependent on a sufficient concentration of mPRα which can be upregulated by in vivo LHRHa treatments. These findings potentially have practical applications for enhancing the fertility of male flounder broodstock.


Asunto(s)
Membrana Celular/metabolismo , Fertilización/efectos de los fármacos , Lenguado/fisiología , Progestinas/farmacología , Receptores de Progesterona/metabolismo , Motilidad Espermática/fisiología , Animales , Membrana Celular/efectos de los fármacos , Cortodoxona/análogos & derivados , Cortodoxona/farmacología , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Hormona Liberadora de Gonadotropina/administración & dosificación , Hormona Liberadora de Gonadotropina/farmacología , Humanos , Inyecciones , Masculino , Norprogesteronas/farmacología , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Regulación hacia Arriba/efectos de los fármacos
17.
Mol Cell Endocrinol ; 364(1-2): 89-100, 2012 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22954681

RESUMEN

The gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their receptors play critical roles in vertebrate reproduction. In order to study intra- and interspecies ligand promiscuity of gonadotropins, COS-7 cells were transiently transfected with one of the gonadotropin receptor genes, FSHR or LHR, and tested for activation by gonadotropins from representative fish orders: Aquilliformes (eel; e), Salmoniformes (trout; tr), and Perciformes (tilapia; ta), and of mammalian origin: porcine (p), bovine (b) and human (h). The study reveals complex relations between the gonadotropin hormones and their receptors. Each gonadotropin activated its own cognate receptor. However, taLHR was also activated by hCG and eLHR was activated by hFSH, hCG, and trFSH. For FSHR, the only cross-reactivity detected was for hFSHR, which was activated by pFSH and bFSH. These findings are of great interest and applicability in the context of activation of various GTHRs by their ligands and by ligands from other vertebrates. Analysis of the three-dimensional models of the structures highlights the importance of residues outside of the currently established hormone-receptor interface region. In addition, the interface residues in taFSHR and the effect of exon duplication, which causes an insert in the LRR domain, are suggested to affect the interaction and binding of taFSH.


Asunto(s)
Hormona Folículo Estimulante/química , Hormona Luteinizante/química , Receptores de HFE/química , Receptores de HL/química , Reproducción/genética , Secuencia de Aminoácidos , Animales , Células COS , Bovinos , Chlorocebus aethiops , Anguilas/genética , Anguilas/metabolismo , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Humanos , Cinética , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Receptores de HFE/genética , Receptores de HFE/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Porcinos/genética , Porcinos/metabolismo , Tilapia/genética , Tilapia/metabolismo , Trucha/genética , Trucha/metabolismo
18.
Gen Comp Endocrinol ; 178(1): 28-36, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22522050

RESUMEN

The gonadotropins (GTHs) follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are the key regulators of reproduction. We determined the competence of heterologous recombinant GTHs at eliciting steroid secretion from carp ovaries at different reproductive stages. We collected carp ovaries at: early, mid and end vitellogenesis, when most of the oocytes still contained a germinal vesicle (GV) at a central stage, and mature ovaries with a migrating GV. Plasma estradiol (E2) levels at early vitellogenesis were high and decreased thereafter. Basal secretion levels of E2 increased with oocyte diameter and GSI value, whereas 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) was detected only in females with mature follicles. Carp ovary fragments were exposed to recombinant fish GTHs belonging to different teleost orders: Japanese eel (Anguilla japonica, Anguilliformes), Manchurian trout (Brachymystax lenok, Salmoniformes), and Nile tilapia (Oreochromis niloticus); to mammalian GTHs (pFSH and hCG), or to carp and tilapia pituitary extract (CPE and TPE, respectively). All of the recombinant GTHs tested stimulated steroid secretion. However, the steroid secretion differed according to the type of GTH and the developmental state of the ovary. CPE increased the secretion of both E2 and DHP at almost all stages of ovarian maturity. In mature ovarian fragments, DHP secretion was higher in response to recombinant LHs (eel and tilapia) than to recombinant FSH. Early- and mid-vitellogenic ovaries showed no secretion of DHP and high secretion of E2 in response to all recombinant GTHs tested. This is in line with the hypothesis that LH regulates the final stages of maturation, when the involvement of FSH is marginal. These results may contribute to understanding the mechanisms that determine differential activation of steroid secretion and specificity in fish.


Asunto(s)
Carpas/metabolismo , Hormona Folículo Estimulante/farmacología , Hormona Luteinizante/farmacología , Ovario/efectos de los fármacos , Ovario/metabolismo , Reproducción/fisiología , Anguilla , Animales , Estradiol/sangre , Femenino , Humanos , Folículo Ovárico/citología , Tilapia , Trucha , Vitelogénesis/efectos de los fármacos
19.
Gen Comp Endocrinol ; 153(1-3): 323-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17507016

RESUMEN

We recently produced Oreochromis niloticus recombinant LH and FSH as single-chain polypeptides in the methylotrophic yeast Pichia pastoris. Glycoprotein subunit alpha was joined with tilapia (t) LHbeta or tFSHbeta mature protein-coding sequences to form a fusion gene that encodes a ;;tethered" polypeptide, in which the gonadotropin beta-subunit forms the N-terminal part and the alpha-subunit forms the C-terminal part. Recombinant (r) gonadotropins were used to develop specific and homologous competitive ELISAs for measurements of FSH and LH in the plasma and pituitary of tilapia, using primary antibodies against rtLHbeta or rtFSHbeta, respectively, and rtLHbetaalpha or rtFSHbetaalpha for the standard curves. The wells were coated with either rtLHbeta (2ng/ml) or rtFSHbeta (0.5ng/well), and the final concentrations of the antisera were 1:5000 (for tLH) or 1:50,000 (for tFSH). The sensitivity of the assay was 15.84pg/ml for tLH and 0.24pg/ml for tFSH measurements in the plasma, whereas for the measurements in the pituitary, the sensitivity was 2.43ng/ml and 1.52ng/ml for tLH and tFSH, respectively. The standard curves for tFSH and tLH paralleled those of serially diluted pituitary extracts of other cichlids, as well as of serially diluted pituitary extract of seabream, European seabass and hybrid bass. We examined plasma tFSH and tLH levels in the course of one reproductive cycle, between two successive spawnings, in three individual tilapia females. Plasma levels of both FSH and LH increased during the second day after the eggs had been removed, probably related to the vitellogenic phase. LH levels increased toward spawning, which occurred on the 11th day. FSH levels also increased on day of cycle, probably due to recruitment of a new generation of follicles for the successive spawning. The development of specific ELISAs using recombinant gonadotropins is expected to advance the study of the distinct functions of each of these important hormones.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Hormona Folículo Estimulante/análisis , Gonadotropinas/metabolismo , Hormona Luteinizante/análisis , Tilapia/sangre , Animales , Femenino , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Masculino , Proteínas Recombinantes/metabolismo , Reproducción
20.
Biol Reprod ; 76(4): 692-700, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17192515

RESUMEN

In fish, FSH is generally important for early gonadal development and vitellogenesis. As in mammals, FSH is a heterodimer composed of an alpha subunit that is noncovalently associated with the hormone-specific beta subunit. The objective of the present study was to express glycosylated, properly folded, and biologically active tilapia FSH (tFSH) using the Pichia pastoris expression system. Using this material, we aimed to develop a specific ELISA and to enable the study of FSH response to GnRH. The methylotrophic yeast P. pastoris was used to coexpress recombinant genes formed by fusion of mating factor alpha leader and tilapia fshb and cga coding sequences. Western blot analysis of tilapia pituitary FSH, resolved by SDS-PAGE, yielded a band of 15 kDa, while recombinant tFSH beta (rtFSH beta) and rtFSH beta alpha had molecular masses of 17-18 kDa and 26-30 kDa, respectively. Recombinant tFSH beta alpha was found to bear only N-linked carbohydrates. Recombinant tFSH beta alpha significantly enhanced 11-ketotestosterone (11-KT) and estradiol secretion from tilapia testes and ovaries, respectively, in a dose-dependent manner (similar to tilapia pituitary extract, affinity-purified pituitary FSH, and porcine FSH). Using antibodies raised against rtFSH beta, FSH-containing cells were localized adjacent to hypothalamic nerve fibers ramifying in the proximal pars distalis (PPD), while LH cells were localized in a more peripheral region of the PPD. Moreover, FSH is under the control of hypothalamic decapeptide GnRH, an effect that was abolished through the use of specific bioneutralizing antisera, anti-rtFSH beta. It also reduced basal secretion of 11-KT.


Asunto(s)
Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Hormonas Esteroides Gonadales/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Tilapia/metabolismo , Animales , Anticuerpos/farmacología , Clonación Molecular , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/inmunología , Gonadotropinas/metabolismo , Inmunohistoquímica , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Testosterona/análogos & derivados , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...