Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Cancer Discov ; : OF1-OF15, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38588588

RESUMEN

Gut-microbiota modulation shows promise in improving immune-checkpoint blockade (ICB) response; however, precision biomarker-driven, placebo-controlled trials are lacking. We performed a multicenter, randomized placebo-controlled, biomarker-stratified phase I trial in patients with ICB-naïve metastatic melanoma using SER-401, an orally delivered Firmicutes-enriched spore formulation. Fecal microbiota signatures were characterized at baseline; patients were stratified by high versus low Ruminococcaceae abundance prior to randomization to the SER-401 arm (oral vancomycin-preconditioning/SER-401 alone/nivolumab + SER-401), versus the placebo arm [placebo antibiotic/placebo microbiome modulation (PMM)/nivolumab + PMM (NCT03817125)]. Analysis of 14 accrued patients demonstrated that treatment with SER-401 + nivolumab was safe, with an objective response rate of 25% in the SER-401 arm and 67% in the placebo arm (though the study was under-powered related to poor accrual during the COVID-19 pandemic). Translational analyses demonstrated that vancomycin preconditioning was associated with the disruption of the gut microbiota and impaired immunity, with incomplete recovery at ICB administration (particularly in patients with high baseline Ruminococcaceae). These results have important implications for future microbiome modulation trials. SIGNIFICANCE: This first-of-its-kind, placebo-controlled, randomized biomarker-driven microbiome modulation trial demonstrated that vancomycin + SER-401 and anti-PD-1 are safe in melanoma patients. Although limited by poor accrual during the pandemic, important insights were gained via translational analyses, suggesting that antibiotic preconditioning and interventional drug dosing regimens should be carefully considered when designing such trials.

2.
Cell Rep Med ; 5(4): 101509, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631287

RESUMEN

Dr. Jennifer A. Wargo, Dr. Nadim J. Ajami, and Dr. Carrie R. Daniel-MacDougall describe their academic and clinical work on the role of the microbiome to determine response to immunotherapies and discuss current challenges and potential needs to integrate their findings into clinical practice.

3.
Blood Adv ; 8(9): 2074-2084, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38471063

RESUMEN

ABSTRACT: Disruption of the intestinal microbiome is observed with acute graft-versus-host disease (GVHD) of the lower gastrointestinal (LGI) tract, and fecal microbiota transplantation (FMT) has successfully cured steroid-refractory cases. In this open-label, single-arm, pilot study, third-party, single-donor FMT was administered in combination with systemic corticosteroids to participants with high-risk acute LGI GVHD, with a focus on treatment-naïve cases. Participants were scheduled to receive 1 induction dose (15 capsules per day for 2 consecutive days), followed by 3 weekly maintenance doses, consisting of 15 capsules per dose. The primary end point of the study was feasibility, which would be achieved if ≥80% of participants able to swallow ≥40 of the 75 scheduled capsules. Ten participants (9 treatment-naïve; 1 steroid-refractory) were enrolled and treated. The study met the primary end point, with 9 of 10 participants completing all eligible doses. Organ-specific LGI complete response rate at day 28 was 70%. Initial clinical response was observed within 1 week for all responders, and clinical responses were durable without recurrent LGI GVHD in complete responders. Exploratory analyses suggest that alpha diversity increased after FMT. Although recipient microbiome composition never achieved a high degree of donor similarity, expansion of donor-derived species and increases in tryptophan metabolites and short-chain fatty acids were observed within the first 7 days after FMT. Investigation into the use of microbiome-targeted interventions earlier in the treatment paradigm for acute LGI GVHD is warranted. This trial was registered at www.ClinicalTrials.gov as #NCT04139577.


Asunto(s)
Trasplante de Microbiota Fecal , Enfermedad Injerto contra Huésped , Humanos , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/etiología , Trasplante de Microbiota Fecal/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Microbioma Gastrointestinal , Anciano , Proyectos Piloto , Enfermedad Aguda , Resultado del Tratamiento
4.
EBioMedicine ; 98: 104873, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38040541

RESUMEN

BACKGROUND: Accessible prebiotic foods hold strong potential to jointly target gut health and metabolic health in high-risk patients. The BE GONE trial targeted the gut microbiota of obese surveillance patients with a history of colorectal neoplasia through a straightforward bean intervention. METHODS: This low-risk, non-invasive dietary intervention trial was conducted at MD Anderson Cancer Center (Houston, TX, USA). Following a 4-week equilibration, patients were randomized to continue their usual diet without beans (control) or to add a daily cup of study beans to their usual diet (intervention) with immediate crossover at 8-weeks. Stool and fasting blood were collected every 4 weeks to assess the primary outcome of intra and inter-individual changes in the gut microbiome and in circulating markers and metabolites within 8 weeks. This study was registered on ClinicalTrials.gov as NCT02843425, recruitment is complete and long-term follow-up continues. FINDINGS: Of the 55 patients randomized by intervention sequence, 87% completed the 16-week trial, demonstrating an increase on-intervention in diversity [n = 48; linear mixed effect and 95% CI for inverse Simpson index: 0.16 (0.02, 0.30); p = 0.02] and shifts in multiple bacteria indicative of prebiotic efficacy, including increased Faecalibacterium, Eubacterium and Bifidobacterium (all p < 0.05). The circulating metabolome showed parallel shifts in nutrient and microbiome-derived metabolites, including increased pipecolic acid and decreased indole (all p < 0.002) that regressed upon returning to the usual diet. No significant changes were observed in circulating lipoproteins within 8 weeks; however, proteomic biomarkers of intestinal and systemic inflammatory response, fibroblast-growth factor-19 increased, and interleukin-10 receptor-α decreased (p = 0.01). INTERPRETATION: These findings underscore the prebiotic and potential therapeutic role of beans to enhance the gut microbiome and to regulate host markers associated with metabolic obesity and colorectal cancer, while further emphasizing the need for consistent and sustainable dietary adjustments in high-risk patients. FUNDING: This study was funded by the American Cancer Society.


Asunto(s)
Microbioma Gastrointestinal , Prebióticos , Humanos , Proteómica , Obesidad/microbiología , Inflamación
5.
Res Sq ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076985

RESUMEN

The gut microbiome has emerged as a key regulator of response to cancer immunotherapy. However, there is a gap in our understanding of the underlying mechanisms by which the microbiome influences immunotherapy. To this end, we developed a mathematical model based on i) gut microbiome data derived from preclinical studies on melanomas after fecal microbiota transplant, ii) mechanistic modeling of antitumor immune response, and iii) robust association analysis of murine and human microbiome profiles with model-predicted immune profiles. Using our model, we could distill the complexity of these murine and human studies on microbiome modulation in terms of just two model parameters: the activation and killing rate constants of immune cells. We further investigated associations between specific bacterial taxonomies and antitumor immunity and immunotherapy efficacy. This model can guide the design of studies to refine and validate mechanistic links between the microbiome and immune system.

6.
Nat Commun ; 14(1): 7630, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993433

RESUMEN

Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Infecciones por Enterovirus , Islotes Pancreáticos , Humanos , Niño , Autoanticuerpos , Transcriptoma , Autoinmunidad/genética , Insulina/metabolismo , Infecciones por Enterovirus/genética , Islotes Pancreáticos/metabolismo
7.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37904958

RESUMEN

Motivation: Although the human microbiome plays a key role in health and disease, the biological mechanisms underlying the interaction between the microbiome and its host are incompletely understood. Integration with other molecular profiling data offers an opportunity to characterize the role of the microbiome and elucidate therapeutic targets. However, this remains challenging to the high dimensionality, compositionality, and rare features found in microbiome profiling data. These challenges necessitate the use of methods that can achieve structured sparsity in learning cross-platform association patterns. Results: We propose Tree-Aggregated factor RegressiOn (TARO) for the integration of microbiome and metabolomic data. We leverage information on the phylogenetic tree structure to flexibly aggregate rare features. We demonstrate through simulation studies that TARO accurately recovers a low-rank coefficient matrix and identifies relevant features. We applied TARO to microbiome and metabolomic profiles gathered from subjects being screened for colorectal cancer to understand how gut microrganisms shape intestinal metabolite abundances. Availability and implementation: The R package TARO implementing the proposed methods is available online at https://github.com/amishra-stats/taro-package .

8.
Cancer Cell ; 41(11): 1945-1962.e11, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37863066

RESUMEN

Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.


Asunto(s)
Microbiota , Neoplasias del Cuello Uterino , Femenino , Humanos , Ácido Láctico/metabolismo , Neoplasias del Cuello Uterino/radioterapia , Lactobacillus/genética , Lactobacillus/metabolismo , Microambiente Tumoral
9.
JAMA Dermatol ; 159(10): 1076-1084, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647056

RESUMEN

Importance: The gut microbiome modulates the immune system and responses to immunotherapy in patients with late-stage melanoma. It is unknown whether fecal microbiota profiles differ between healthy individuals and patients with melanoma or if microbiota profiles differ among patients with different stages of melanoma. Defining gut microbiota profiles in individuals without melanoma and those with early-stage and late-stage melanoma may reveal features associated with disease progression. Objective: To characterize and compare gut microbiota profiles between healthy volunteers and patients with melanoma and between patients with early-stage and late-stage melanoma. Design, Setting, and Participants: This single-site case-control study took place at an academic comprehensive cancer center. Fecal samples were collected from systemic treatment-naive patients with stage I to IV melanoma from June 1, 2015, to January 31, 2019, and from healthy volunteers from June 1, 2021, to January 31, 2022. Patients were followed up for disease recurrence until November 30, 2021. Main Outcomes and Measures: Fecal microbiota was profiled by 16S ribosomal RNA sequencing. Clinical and pathologic characteristics, treatment, and disease recurrence were extracted from electronic medical records. Fecal microbiome diversity, taxonomic profiles and inferred functional profiles were compared between groups. Results: A total of 228 participants were enrolled (126 men [55.3%]; median age, 59 [range, 21-90] years), including 49 volunteers without melanoma, 38 patients with early-stage melanoma (29 with stage I or melanoma in situ and 9 with stage II), and 141 with late-stage melanoma (66 with stage III and 75 with stage IV). Community differences were observed between patients with melanoma and volunteers. Patients with melanoma had a higher relative abundance of Fusobacterium compared with controls on univariate analysis (0.19% vs 0.003%; P < .001), but this association was attenuated when adjusted for covariates (log2 fold change of 5.18 vs controls; P = .09). Microbiomes were distinct between patients with early-stage and late-stage melanoma. Early-stage melanoma had a higher alpha diversity (Inverse Simpson Index 14.6 [IQR, 9.8-23.0] vs 10.8 [IQR, 7.2-16.8]; P = .003), and a higher abundance of the genus Roseburia on univariate analysis (2.4% vs 1.2%; P < .001) though statistical significance was lost with covariate adjustment (log2 fold change of 0.86 vs controls; P = .13). Multiple functional pathways were differentially enriched between groups. No associations were observed between the microbial taxa and disease recurrence in patients with stage III melanoma treated with adjuvant immunotherapy. Conclusions and Relevance: The findings of this case-control study suggest that fecal microbiota profiles were significantly different among patients with melanoma and controls and between patients with early-stage and late-stage melanoma. Prospective investigations of the gut microbiome and changes that occur with disease progression may identify future microbial targets for intervention.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Masculino , Humanos , Persona de Mediana Edad , Microbioma Gastrointestinal/inmunología , Estudios Prospectivos , Estudios de Casos y Controles , Progresión de la Enfermedad , Melanoma Cutáneo Maligno
10.
Res Sq ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503252

RESUMEN

While the nervous system has reciprocal interactions with both cancer and the immune system, little is known about the potential role of tumor associated nerves (TANs) in modulating anti-tumoral immunity. Moreover, while peri-neural invasion is a well establish poor prognostic factor across cancer types, the mechanisms driving this clinical effect remain unknown. Here, we provide clinical and mechniastic association between TANs damage and resistance to anti-PD-1 therapy. Using electron microscopy, electrical conduction studies, and tumor samples of cutaneous squamous cell carcinoma (cSCC) patients, we showed that cancer cells can destroy myelin sheath and induce TANs degeneration. Multi-omics and spatial analyses of tumor samples from cSCC patients who underwent neoadjuvant anti-PD-1 therapy demonstrated that anti-PD-1 non-responders had higher rates of peri-neural invasion, TANs damage and degeneration compared to responders, both at baseline and following neoadjuvant treatment. Tumors from non-responders were also characterized by a sustained signaling of interferon type I (IFN-I) - known to both propagate nerve degeneration and to dampen anti-tumoral immunity. Peri-neural niches of non-responders were characterized by higher immune activity compared to responders, including immune-suppressive activity of M2 macrophages, and T regulatory cells. This tumor promoting inflammation expanded to the rest of the tumor microenvironment in non-responders. Anti-PD-1 efficacy was dampened by inducing nerve damage prior to treatment administration in a murine model. In contrast, anti-PD-1 efficacy was enhanced by denervation and by interleukin-6 blockade. These findings suggested a potential novel anti-PD-1 resistance drived by TANs damage and inflammation. This resistance mechanism is targetable and may have therapeutic implications in other neurotropic cancers with poor response to anti-PD-1 therapy such as pancreatic, prostate, and breast cancers.

11.
Ann Surg ; 278(4): 538-548, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37465976

RESUMEN

OBJECTIVE: External exposures, the host, and the microbiome interact in oncology. We aimed to investigate tumoral microbiomes in young-onset rectal cancers (YORCs) for profiles potentially correlative with disease etiology and biology. BACKGROUND: YORC is rapidly increasing, with 1 in 4 new rectal cancer cases occurring under the age of 50 years. Its etiology is unknown. METHODS: YORC (<50 y old) or later-onset rectal cancer (LORC, ≥50 y old) patients underwent pretreatment biopsied of tumor and tumor-adjacent normal (TAN) tissue. After whole genome sequencing, metagenomic analysis quantified microbial communities comparing tumors versus TANs and YORCs versus LORCs, controlling for multiple testing. Response to neoadjuvant therapy (NT) was categorized as major pathological response (MPR, ≤10% residual viable tumor) versus non-MPR. RESULTS: Our 107 tumors, 75 TANs from 37 (35%) YORCs, and 70 (65%) LORCs recapitulated bacterial species were previously associated with colorectal cancers (all P <0.0001). YORC and LORC tumoral microbiome signatures were distinct. After NT, 13 patients (12.4%) achieved complete pathologic response, whereas MPR occurred in 47 patients (44%). Among YORCs, MPR was associated with Fusobacterium nucleaum , Bacteroides dorei, and Ruminococcus bromii (all P <0.001), but MPR in LORC was associated with R. bromii ( P <0.001). Network analysis of non-MPR tumors demonstrated a preponderance of oral bacteria not observed in MPR tumors. CONCLUSIONS: Microbial signatures were distinct between YORC and LORC. Failure to achieve an MPR was associated with oral bacteria in tumors. These findings urge further studies to decipher correlative versus mechanistic associations but suggest a potential for microbial modulation to augment current treatments.


Asunto(s)
Microbiota , Neoplasias del Recto , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Biopsia
12.
Nat Med ; 29(8): 1910-1911, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420098
13.
Front Immunol ; 14: 1051431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063829

RESUMEN

Background: Squamous cell carcinoma of the anus (SCCA) is a rare gastrointestinal cancer. Factors associated with progression of HPV infection to anal dysplasia and cancer are unclear and screening guidelines and approaches for anal dysplasia are less clear than for cervical dysplasia. One potential contributing factor is the anorectal microbiome. In this study, we aimed to identify differences in anal microbiome composition in the settings of HPV infection, anal dysplasia, and anal cancer in this rare disease. Methods: Patients were enrolled in two prospective studies. Patients with anal dysplasia were part of a cross-sectional cohort that enrolled women with high-grade lower genital tract dysplasia. Anorectal tumor swabs were prospectively collected from patients with biopsy-confirmed locally advanced SCCA prior to receiving standard-of-care chemoradiotherapy (CRT). Patients with high-grade lower genital tract dysplasia without anal dysplasia were considered high-risk (HR Normal). 16S V4 rRNA Microbiome sequencing was performed for anal swabs. Alpha and Beta Diversity and composition were compared for HR Normal, anal dysplasia, and anal cancer. Results: 60 patients with high-grade lower genital tract dysplasia were initially enrolled. Seven patients had concurrent anal dysplasia and 44 patients were considered HR Normal. Anorectal swabs from 21 patients with localized SCCA were included, sequenced, and analyzed in the study. Analysis of weighted and unweighted UniFrac distances demonstrated significant differences in microbial community composition between anal cancer and HR normal (p=0.018). LEfSe identified that all three groups exhibited differential enrichment of specific taxa. Peptoniphilus (p=0.028), Fusobacteria (p=0.0295), Porphyromonas (p=0.034), and Prevotella (p=0.029) were enriched in anal cancer specimens when compared to HR normal. Conclusion: Although alpha diversity was similar between HR Normal, dysplasia and cancer patients, composition differed significantly between the three groups. Increased anorectal Peptoniphilus, Fusobacteria, Porphyromonas, and Prevotella abundance were associated with anal cancer. These organisms have been reported in various gastrointestinal cancers with roles in facilitating the proinflammatory microenvironment and neoplasia progression. Future work should investigate a potential role of microbiome analysis in screening for anal dysplasia and investigation into potential mechanisms of how these microbial imbalances influence the immune system and anal carcinogenesis.


Asunto(s)
Neoplasias del Ano , Carcinoma de Células Escamosas , Microbiota , Infecciones por Papillomavirus , Humanos , Femenino , Estudios Prospectivos , Estudios Transversales , Carcinoma de Células Escamosas/complicaciones , Microambiente Tumoral
14.
Viruses ; 15(4)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112933

RESUMEN

The family Tymoviridae comprises positive-sense RNA viruses, which mainly infect plants. Recently, a few Tymoviridae-like viruses have been found in mosquitoes, which feed on vertebrate sources. We describe a novel Tymoviridae-like virus, putatively named, Guachaca virus (GUAV), isolated from Culex pipiens and Culex quinquefasciatus species of mosquitoes and collected in the rural area of Santa Marta, Colombia. After a cytopathic effect was observed in C6/36 cells, RNA was extracted and processed through the NetoVIR next-generation sequencing protocol, and data were analyzed through the VirMAP pipeline. Molecular and phenotypic characterization of the GUAV was achieved using a 5'/3' RACE, transmission electron microscopy, amplification in vertebrate cells, and phylogenetic analysis. A cytopathic effect was observed in C6/36 cells three days post-infection. The GUAV genome was successfully assembled, and its polyadenylated 3' end was corroborated. GUAV shared only 54.9% amino acid identity with its closest relative, Ek Balam virus, and was grouped with the latter and other unclassified insect-associated tymoviruses in a phylogenetic analysis. GUAV is a new member of a family previously described as comprising plant-infecting viruses, which seem to infect and replicate in mosquitoes. The sugar- and blood-feeding behavior of the Culex spp., implies a sustained contact with plants and vertebrates and justifies further studies to unravel the ecological scenario for transmission.


Asunto(s)
Culex , Culicidae , Tymoviridae , Animales , Filogenia , Colombia
15.
Res Sq ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778495

RESUMEN

Acute gastrointestinal intestinal GVHD (aGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation, and the intestinal microbiota is known to impact on its severity. However, an association between treatment response of aGI-GVHD and the intestinal microbiota has not been well-studied. In a cohort of patients with aGI-GVHD (n=37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and loss of Bacteroides ovatus from the microbiome. In a mouse model of carbapenem-aggravated GVHD, introducing Bacteroides ovatus reduced severity of GVHD and improved survival. Bacteroides ovatus reduced degradation of colonic mucus by another intestinal commensal, Bacteroides thetaiotaomicron, via its ability to metabolize dietary polysaccharides into monosaccharides, which then inhibit mucus degradation by Bacteroides thetaiotaomicron and reduce GVHD-related mortality.

16.
Int J Radiat Oncol Biol Phys ; 116(5): 1043-1054, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36801350

RESUMEN

PURPOSE: Human papillomavirus (HPV) is the primary driver of cervical cancer. Although studies in other malignancies correlated peripheral blood DNA clearance with favorable outcomes, research on the prognostic value of HPV clearance in gynecologic cancers using intratumoral HPV is scarce. We aimed to quantify the intratumoral HPV virome in patients undergoing chemoradiation therapy (CRT) and associate this with clinical characteristics and outcomes. METHODS AND MATERIALS: This prospective study enrolled 79 patients with stage IB-IVB cervical cancer undergoing definitive CRT. Cervical tumor swabs collected at baseline and week 5 (end of intensity modulated radiation therapy) were sent for shotgun metagenome sequencing and processed via VirMAP, a viral genome sequencing and identification tool for all known HPV types. The data were categorized into HPV groups (16, 18, high risk [HR], and low risk [LR]). We used independent t tests and Wilcoxon signed-rank to compare continuous variables and χ2 and Fisher exact tests to compare categorical variables. Kaplan-Meier survival modeling was performed with log-rank testing. HPV genotyping was verified using quantitative polymerase chain reaction to validate VirMAP results using receiver operating characteristic curve and Cohen's kappa. RESULTS: At baseline, 42%, 12%, 25%, and 16% of patients were positive for HPV 16, HPV 18, HPV HR, and HPV LR, respectively, and 8% were HPV negative. HPV type was associated with insurance status and CRT response. Patients with HPV 16+ and other HPV HR+ tumors were significantly more likely to have a complete response to CRT versus patients with HPV 18 and HPV LR/HPV-negative tumors. Overall HPV viral loads predominantly decreased throughout CRT, except for HPV LR viral load. CONCLUSIONS: Rarer, less well-studied HPV types in cervical tumors are clinically significant. HPV 18 and HPV LR/negative tumors are associated with poor CRT response. This feasibility study provides a framework for a larger study of intratumoral HPV profiling to predict outcomes in patients with cervical cancer.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/patología , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Estudios Prospectivos , Genotipo , Viroma , Papillomaviridae/genética , ADN Viral/análisis
17.
J Exp Med ; 220(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36367776

RESUMEN

Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.


Asunto(s)
Colitis , Interleucina-6 , Ratones , Animales , Calidad de Vida , Colitis/patología , Inmunoterapia , Inflamación
18.
Clin Cancer Res ; 29(1): 154-164, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36166093

RESUMEN

PURPOSE: Overweight/obese (OW/OB) patients with metastatic melanoma unexpectedly have improved outcomes with immune checkpoint inhibitors (ICI) and BRAF-targeted therapies. The mechanism(s) underlying this association remain unclear, thus we assessed the integrated molecular, metabolic, and immune profile of tumors, as well as gut microbiome features, for associations with patient body mass index (BMI). EXPERIMENTAL DESIGN: Associations between BMI [normal (NL < 25) or OW/OB (BMI ≥ 25)] and tumor or microbiome characteristics were examined in specimens from 782 patients with metastatic melanoma across 7 cohorts. DNA associations were evaluated in The Cancer Genome Atlas cohort. RNA sequencing from 4 cohorts (n = 357) was batch corrected and gene set enrichment analysis (GSEA) by BMI category was performed. Metabolic profiling was conducted in a subset of patients (x = 36) by LC/MS, and in flow-sorted melanoma tumor cells (x = 37) and patient-derived melanoma cell lines (x = 17) using the Seahorse XF assay. Gut microbiome features were examined in an independent cohort (n = 371). RESULTS: DNA mutations and copy number variations were not associated with BMI. GSEA demonstrated that tumors from OW/OB patients were metabolically quiescent, with downregulation of oxidative phosphorylation and multiple other metabolic pathways. Direct metabolite analysis and functional metabolic profiling confirmed decreased central carbon metabolism in OW/OB metastatic melanoma tumors and patient-derived cell lines. The overall structure, diversity, and taxonomy of the fecal microbiome did not differ by BMI. CONCLUSIONS: These findings suggest that the host metabolic phenotype influences melanoma metabolism and provide insight into the improved outcomes observed in OW/OB patients with metastatic melanoma treated with ICIs and targeted therapies. See related commentary by Smalley, p. 5.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Factores de Riesgo , Variaciones en el Número de Copia de ADN , Obesidad/complicaciones , Sobrepeso , Melanoma/genética , Melanoma/complicaciones , Índice de Masa Corporal
19.
Sci Transl Med ; 14(671): eabo3445, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36383683

RESUMEN

Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies.


Asunto(s)
Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas , Neoplasias , Neutropenia , Ratones , Animales , Propionatos , Verrucomicrobia , Moco/metabolismo , Mucinas/metabolismo , Dieta , Neutropenia/metabolismo , Neoplasias/metabolismo
20.
BMC Cancer ; 22(1): 945, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050658

RESUMEN

BACKGROUND: Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. METHOD: Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient's clinical characteristics. RESULTS: Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. CONCLUSIONS: In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias del Cuello Uterino , Femenino , Microbioma Gastrointestinal/genética , Humanos , Redes y Vías Metabólicas , Metagenoma , Moco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...