Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anat ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096036

RESUMEN

Crouzon syndrome is a congenital craniofacial disorder caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2). It is characterized by the premature fusion of cranial sutures, leading to a brachycephalic head shape, and midfacial hypoplasia. The aim of this study was to investigate the effect of the FGFR2 mutation on the microarchitecture of cranial bones at different stages of postnatal skull development, using the FGFR2C342Y mouse model. Apart from craniosynostosis, this model shows cranial bone abnormalities. High-resolution synchrotron microtomography images of the frontal and parietal bone were acquired for both FGFR2C342Y/+ (Crouzon, heterozygous mutant) and FGFR2+/+ (control, wild-type) mice at five ages (postnatal days 1, 3, 7, 14 and 21, n = 6 each). Morphometric measurements were determined for cortical bone porosity: osteocyte lacunae and canals. General linear model to assess the effect of age, anatomical location and genotype was carried out for each morphometric measurement. Histological analysis was performed to validate the findings. In both groups (Crouzon and wild-type), statistical difference in bone volume fraction, average canal volume, lacunar number density, lacunar volume density and canal volume density was found at most age points, with the frontal bone generally showing higher porosity and fewer lacunae. Frontal bone showed differences between the Crouzon and wild-type groups in terms of lacunar morphometry (average lacunar volume, lacunar number density and lacunar volume density) with larger, less dense lacunae around the postnatal age of P7-P14. Histological analysis of bone showed marked differences in frontal bone only. These findings provide a better understanding of the pathogenesis of Crouzon syndrome and will contribute to computational models that predict postoperative changes with the aim to improve surgical outcome.

2.
Medicina (Kaunas) ; 60(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38541166

RESUMEN

Background and Objectives: Spring-assisted surgery is a popular option for the treatment of non-syndromic craniosynostosis. The main drawback of this procedure is the need for a second surgery for spring removal, which could be avoided if a distractor material could be metabolised over time. Iron-Manganese alloys (FeMn) have a good trade-off between degradation rate and strength; however, their biocompatibility is still debated. Materials and Methods: In this study, the neuro-compatibility of Fe-20Mn (wt.%) was assessed using standard assays. PC-12 cells were exposed to Fe-20Mn (wt.%) and stainless steel via indirect contact. To examine the cytotoxicity, a Cell Tox Green assay was carried out after 1, 2, and 3 days of incubation. Following differentiation, a neurite morphological examination after 1 and 7 days of incubation time was carried out. The degradation response in modified Hank's solution at 1, 3, and 7 days was investigated, too. Results: The cytotoxicity assay showed a higher toxicity of Fe-20Mn than stainless steel at earlier time points; however, at the latest time point, no differences were found. Neurite morphology was similar for cells exposed to Fe-20Mn and stainless steel. Conclusions: In conclusion, the Fe-20Mn alloy shows promising neuro-compatibility. Future studies will focus on in vivo studies to confirm the cellular response to Fe-20Mn.


Asunto(s)
Implantes Absorbibles , Acero Inoxidable , Humanos , Ensayo de Materiales , Aleaciones
3.
Artículo en Inglés | MEDLINE | ID: mdl-38108140

RESUMEN

Sagittal Craniosynostosis (SC) is a congenital craniofacial malformation, involving premature sagittal suture ossification; spring-assisted cranioplasty (SAC) - insertion of metallic distractors for skull reshaping - is an established method for treating SC. Surgical outcomes are predictable using numerical modelling, however published methods rely on computed tomography (CT) scans availability, which are not routinely performed. We investigated a simplified method, based on radiation-free 3D stereophotogrammetry scans.Eight SAC patients (age 5.1 ± 0.4 months) with preoperative CT and 3D stereophotogrammetry scans were included. Information on osteotomies, spring model and post-operative spring opening were recorded. For each patient, two preoperative models (PREOP) were created: i) CT model and ii) S model, created by processing patient specific 3D surface scans using population averaged skin and skull thickness and suture locations. Each model was imported into ANSYS Mechanical (Analysis System Inc., Canonsburg, PA) to simulate spring expansion. Spring expansion and cranial index (CI - skull width over length) at times equivalent to immediate postop (POSTOP) and follow up (FU) were extracted and compared with in-vivo measurements.Overall expansion patterns were very similar for the 2 models at both POSTOP and FU. Both models had comparable outcomes when predicting spring expansion. Spring induced CI increase was similar, with a difference of 1.2%±0.8% for POSTOP and 1.6%±0.6% for FU.This work shows that a simplified model created from the head surface shape yields acceptable results in terms of spring expansion prediction. Further modelling refinements will allow the use of this predictive tool during preoperative planning.


Spring-assisted cranioplasty (SAC) ­insertion of metallic distractors helping skull reshaping ­ is a method for treating sagittal craniosynostosis, caused by premature sagittal suture closure. We present a method for predicting SAC outcomes, relying on radiation-free 3D stereophotogrammetry scans. Eight patients with preoperative CT and 3D stereophotogrammetry scans were recruited; results of spring expansion simulation were compared between models created using CT versus 3D scan data. Expansion patterns and extent of reshaping were very similar. This work proves that SAC preoperative planning can be carried out using non-ionising imaging. Further modelling refinements will allow clinical adoption of this predictive tool.

4.
J Craniofac Surg ; 34(1): 131-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36104836

RESUMEN

PURPOSE: Mismatch between preoperative planning and surgical outcome in maxillofacial surgery relate to on-table replication of presurgical planning and predictive algorithm inaccuracy: software error was hereby decoupled from planning inaccuracy to assess a commercial software. The hypothesis was that soft tissue prediction error would be minimized if the surgical procedure was replicated precisely as planned and is independent of the extent of bone repositioning. MATERIALS AND METHODS: Cone-beam computed tomography scans of 16 Le Fort I osteotomy patients were collected at Boston Children's Hospital. Preoperative and postoperative models of bone and soft tissue were constructed and the maxilla repositioning was replicated. Each model was subdivided into 6 regions: mouth, nose, eyes, and cheeks. Soft tissue prediction (performed using Proplan CMF-Materialise) for each patient was compared with the relative postoperative reconstruction and error was determined. P <0.05 was considered significant. RESULTS: Le Fort I segment repositioning was replicated within 0.70±0.18 mm. The highest prediction error was found in the mouth (1.49±0.77 mm) followed by the cheeks (0.98±0.34 mm), nose (0.86±0.23 mm), and eyes (0.76±0.32). Prediction error on cheeks correlated significantly with mouth ( r =0.63, P < 0.01) and nose ( r =0.67, P < 0.01). Mouth prediction error correlated with total advancement ( r =0.52, P =0.04). CONCLUSIONS: ProPlan CMF is a useful outcome prediction tool; however, accuracy decreases with the extent of maxillary advancement even when errors in surgical replication are minimized.


Asunto(s)
Imagenología Tridimensional , Osteotomía Le Fort , Niño , Humanos , Estudios Retrospectivos , Osteotomía Le Fort/métodos , Cefalometría/métodos , Imagenología Tridimensional/métodos , Maxilar/diagnóstico por imagen , Maxilar/cirugía , Computadores
5.
Sci Rep ; 12(1): 6694, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461315

RESUMEN

Early diagnosis of osteoarthritis (OA), before the onset of irreversible changes is crucial for understanding the disease process and identifying potential disease-modifying treatments from the earliest stage. OA is a whole joint disease and affects both cartilage and the underlying subchondral bone. However, spatial relationships between cartilage lesion severity (CLS) and microstructural changes in subchondral plate and trabecular bone remain elusive. Herein, we collected femoral heads from hip arthroplasty for primary osteoarthritis (n = 7) and femoral neck fracture (n = 6; non-OA controls) cases. Samples were regionally assessed for cartilage lesions by visual inspection using Outerbridge classification and entire femoral heads were micro-CT scanned. Scans of each femoral head were divided into 4 quadrants followed by morphometric analysis of subchondral plate and trabecular bone in each quadrant. Principal component analysis (PCA), a data reduction method, was employed to assess differences between OA and non-OA samples, and spatial relationship between CLS and subchondral bone changes. Mapping of the trabecular bone microstructure in OA patients with low CLS revealed trabecular organisation resembling non-OA patients, whereas clear differences were identifiable in subchondral plate architecture. The OA-related changes in subchondral plate architecture were summarised in the first principle component (PC1) which correlated with CLS in all quadrants, whilst by comparison such associations in trabecular bone were most prominent in the higher weight-bearing regions of the femoral head. Greater articular cartilage deterioration in OA was regionally-linked with lower BV/TV, TMD and thickness, and greater BS/BV and porosity in the subchondral plate; and with thinner, less separated trabeculae with greater TMD and BS/BV in the trabecular bone. Our findings suggest that impairment of subchondral bone microstructure in early stage of OA is more readily discernible in the cortical plate and that morphological characterisation of the femoral head bone microstructure may allow for earlier OA diagnosis and monitoring of progression.


Asunto(s)
Cartílago Articular , Osteoartritis , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Fémur/patología , Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/patología , Humanos , Osteoartritis/diagnóstico por imagen , Osteoartritis/patología , Microtomografía por Rayos X/métodos
6.
J Mech Behav Biomed Mater ; 125: 104929, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34773914

RESUMEN

Limited information is available on the effect of sagittal craniosynostosis (CS) on morphological and material properties of the parietal bone. Understanding these properties would not only provide an insight into bone response to surgical procedures but also improve the accuracy of computational models simulating these surgeries. The aim of the present study was to characterise the mechanical and microstructural properties of the cortical table and diploe in parietal bone of patients affected by sagittal CS. Twelve samples were collected from pediatric patients (11 males, and 1 female; age 5.2 ± 1.3 months) surgically treated for sagittal CS. Samples were imaged using micro-computed tomography (micro-CT); and mechanical properties were extracted by means of micro-CT based finite element modelling (micro-FE) of three-point bending test, calibrated using sample-specific experimental data. Reference point indentation (RPI) was used to validate the micro-FE output. Bone samples were classified based on their macrostructure as unilaminar or trilaminar (sandwich) structure. The elastic moduli obtained using RPI and micro-FE approaches for cortical tables (ERPI 3973.33 ± 268.45 MPa and Emicro-FE 3438.11 ± 387.38 MPa) in the sandwich structure and diploe (ERPI1958.17 ± 563.79 MPa and Emicro-FE 1960.66 ± 492.44 MPa) in unilaminar samples were in strong agreement (r = 0.86, p < .01). We found that the elastic modulus of cortical tables and diploe were correlated with bone mineral density. Changes in the microstructure and mechanical properties of bone specimens were found to be irrespective of patients' age. Although younger patients are reported to benefit more from surgical intervention as skull is more malleable, understanding the material properties is critical to better predict the surgical outcome in patients <1 year old since age-related changes were minimal.


Asunto(s)
Craneosinostosis , Hueso Parietal , Niño , Craneosinostosis/diagnóstico por imagen , Femenino , Humanos , Lactante , Hueso Parietal/diagnóstico por imagen , Microtomografía por Rayos X
7.
R Soc Open Sci ; 8(8): 210408, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34386254

RESUMEN

Many physiological, biomechanical, evolutionary and clinical studies that explore skeletal structure and function require successful separation of trabecular from cortical compartments of a bone that has been imaged by X-ray micro-computed tomography (micro-CT) prior to analysis. Separation often involves manual subdivision of these two similarly radio-opaque compartments, which can be time-consuming and subjective. We have developed an objective, semi-automated protocol which reduces user bias and enables straightforward, user-friendly segmentation of trabecular from the cortical bone without requiring sophisticated programming expertise. This method can conveniently be used as a 'recipe' in commercial programmes (Avizo herein) and applied to a variety of datasets. Here, we characterize and share this recipe, and demonstrate its application to a range of murine and human bone types, including normal and osteoarthritic specimens, and bones with distinct embryonic origins and spanning a range of ages. We validate the method by testing inter-user bias during the scan preparation steps and confirm utility in the architecturally challenging analysis of growing murine epiphyses. We also report details of the recipe, so that other groups can readily re-create a similar method in open access programmes. Our aim is that this method will be adopted widely to create a reproducible and time-efficient method of segmenting trabecular and cortical bone.

8.
Shoulder Elbow ; 11(2 Suppl): 35-41, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31447943

RESUMEN

BACKGROUND: The purpose of the present study was to analyze and report the clinical outcomes following revision shoulder arthroplasty for failed humeral head resurfacing hemiarthroplasty (HHRH). METHODS: All patients who underwent revision shoulder arthroplasty for failed HHRH at our institution were retrospectively reviewed. Twenty-two shoulders in 20 patients were available for analysis. Mean age at the time of HHRH was 60 years (range 42 years to 75 years). The cohort consisted of 17 females and three males. RESULTS: The mean time from HHRH to revision was 5 years (range 1 year to 8 years). Mean age at the time of revision surgery was 62 years (range 44 years to 80 years). Patients were followed-up for a mean of 3.3 years (range 2 years to 4 years) after revision. Following revision surgery, there was an increase in forward elevation from 67° (range 0° to 130°) to 97° (range 40° to 160°) (p = 0.04). This was accompanied by an improvement in both the Oxford Shoulder Score and the subjective shoulder value, which increased from 13 (range 2 to 28) to 39 (range 24 to 48) (p = 0.000) and from 23 (range 0 to 65) to 79 (range 25 to 100) (p = 0.000) respectively. CONCLUSIONS: Revision shoulder arthroplasty for failed HHRH improves functional outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA