Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 246: 125720, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423451

RESUMEN

In this study, we report optimised synthesis of N-carboxymethylated chitosan (CM-Cts) and its crosslinking to obtain, for the first time, glutaraldehyde crosslinked N-carboxymethylated chitosan (CM-Cts-Glu) as a metal ion sorbent. CM-Cts and CM-Cts-Glu were characterised using FTIR and solid state 13C NMR techniques. As compared to epichlorohydrin, glutaraldehyde was found to be better suited for efficient synthesis of the crosslinked functionalised sorbent. CM-Cts-Glu showed better metal ion uptake properties compared to the crosslinked chitosan (Cts-Glu). Metal ion removal by CM-Cts-Glu was studied in detail under different conditions such as different initial solution concentrations, pH, presence of complexants and competing ions. Further, sorption-desorption kinetics was studied and it was shown that complete desorption and multiple cycles of reuse without any loss in capacity was feasible. The maximum Co(II) uptake obtained for CM-Cts-Glu was found to be 265 µmol/g, while for Cts-Glu it was 10 µmol/g. Metal ion sorption by CM-Cts-Glu was found to be through chelation by the carboxylic acid functional groups present over the chitosan backbone. Utility of the CM-Cts-Glu under complexing decontamination formulations used in nuclear industry was ascertained. While Cts-Glu generally preferred iron over cobalt under complexing conditions, it was shown that the selectivity was reversed in favour of Co(II) in the functionalised sorbent, CM-Cts-Glu. N-carboxylation followed by crosslinking with glutaraldehyde was found to be a feasible approach for the generation of superior chitosan-based sorbents.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Quitosano/química , Glutaral/química , Quelantes , Metales/química , Cinética , Adsorción , Concentración de Iones de Hidrógeno
2.
Micromachines (Basel) ; 12(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34577727

RESUMEN

We studied the metal gate work function of different metal electrode and high-k dielectric combinations by monitoring the flat band voltage shift with dielectric thicknesses using capacitance-voltage measurements. We investigated the impact of different thermal treatments on the work function and linked any shift in the work function, leading to an effective work function, to the dipole formation at the metal/high-k and/or high-k/SiO2 interface. We corroborated the findings with the erase performance of metal/high-k/ONO/Si (MHONOS) capacitors that are identical to the gate stack in three-dimensional (3D) NAND flash. We demonstrate that though the work function extraction is convoluted by the dipole formation, the erase performance is not significantly affected by it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA