Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Curr Pharm Des ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38482625

RESUMEN

BACKGROUND: Interleukin 2 (IL-2) is a vital cytokine in the induction of T and NK cell responses, the proliferation of CD8+ T cells, and the effective treatment of human cancers, such as melanoma and renal cell carcinoma. However, widespread use of this cytokine is limited due to its short half-life, severe toxicity, lack of specific tumor targeting, and activation of Treg cells mediated by high-affinity interleukin-2 receptors. OBJECTIVE: In this study, a tumor-targeting LIV-1 VHH-mutIL2 immunocytokine with reduced CD25 (α chain of the high-affinity IL-2 receptor) binding activity was developed to improve IL-2 half-life by decreasing its renal infiltration in comparison with wild and mutant IL-2 molecules. METHODS: The recombinant immunocytokine was designed and expressed. the biological activity of the purified fusion protein was investigated in in vitro and in vivo experiments. RESULTS: The fusion protein represented specific binding to MCF7 (the breast cancer cell line) and more efficient cytotoxicity than wild-type IL-2 and mutant IL-2. the PK parameters of the recombinant immunocytokine were also improved in comparison to the IL-2 molecules. CONCLUSION: The observed results showed that LIV1-mIL2 immunocytokine could be considered an effective agent in the LIV-1-targeted treatment of cancers due to its longer half-life and stronger cytotoxicity.

2.
AMB Express ; 14(1): 19, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38337114

RESUMEN

The immunotherapeutic application of interleukin-2 (IL-2) in cancer treatment is limited by its off-target effects on different cell populations and insufficient activation of anti-tumor effector cells at the site of the tumor upon tolerated doses. Targeting IL-2 to the tumor microenvironment by generating antibody-cytokine fusion proteins (immunocytokine) would be a promising approach to increase efficacy without associated toxicity. In this study, a novel nanobody-based immunocytokine is developed by the fusion of a mutant (m) IL-2 with a decreased affinity toward CD25 to an anti-vascular endothelial growth factor receptor-2 (VEGFR2) specific nanobody, denoted as VGRmIL2-IC. The antigen binding, cell proliferation, IFN-γ-secretion, and cytotoxicity of this new immunocytokine are evaluated and compared to mIL-2 alone. Furthermore, the pharmacokinetic properties are analyzed. Flow cytometry analysis shows that the VGRmIL2-IC molecule can selectively target VEGFR2-positive cells. The results reveal that the immunocytokine is comparable to mIL-2 alone in the stimulation of Primary Peripheral Blood Mononuclear Cells (PBMCs) and cytotoxicity in in vitro conditions. In vivo studies demonstrate improved pharmacokinetic properties of VGRmIL2-IC in comparison to the wild or mutant IL-2 proteins. The results presented here suggest VGRmIL2-IC could be considered a candidate for the treatment of VEGFR2-positive tumors.

3.
Adv Biol (Weinh) ; 8(2): e2300402, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37840398

RESUMEN

The most crucial disadvantage of DNA-based vaccines is their low immunogenicity; therefore, finding an effectual adjuvant is essential for their development. Herein, immunostimulatory effects of IFNγ cytokine and a CD40 ligand (CD40L) costimulatory molecule are evaluated as combined with an antigen, and also linked to an antigen in mice. For this purpose, after preparation of the HIV-1 Nef, IFNγ, and CD40L DNA constructs, and also their recombinant protein in an Escherichia coli expression system, nine groups of female BALB/c mice are immunized with different regimens of DNA constructs. About 3 weeks and also 3 months after the last injection, humoral and cellular immune responses are assessed in mice sera and splenocytes. Additionally, mice splenocytes are exposed to single-cycle replicable (SCR) HIV-1 virions for evaluating their potency in the secretion of cytokines in vitro. The data indicate that the linkage of IFNγ and CD40L to Nef antigen can significantly induce the Th-1 pathway and activate cytotoxic T lymphocytes compared to other regimens. Moreover, groups receiving the IFNγ-Nef and CD40L-Nef fusion DNA constructs show higher secretion of IFNγ and TNF-α from virion-infected lymphocytes than other groups. Therefore, the IFNγ-Nef and CD40L-Nef fusion DNA constructs are suggested to be a potential option for development of an efficient HIV-1 vaccine.


Asunto(s)
VIH-1 , Vacunas de ADN , Femenino , Animales , Ratones , Citocinas , Ligando de CD40 , VIH-1/genética , Vacunas de ADN/farmacología , Vacunas de ADN/genética , ADN
4.
Iran J Public Health ; 52(8): 1749-1757, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37744552

RESUMEN

Background: Tuberculosis (TB) is one of the leading causes of death worldwide. Besides, one-third of the world population is infected with Mycobacterium tuberculosis (MTB) while staying clinically asymptomatic; the situation is called latent TB infection (LTBI). MiR-21, miR-31, miR-146a, and miR-155 play an important role in many immune and inflammatory pathways. In the present study the expression levels of MiR-21, miR-31, miR-146a, and miR-155 in peripheral blood mononuclear cells (PBMCs) from patients with active TB, latently infected individuals (LTBI), and healthy controls (HC) were investigated. Participants were recruited at the Bouali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran from 2010 to 2011. Methods: PBMCs were stimulated with PPD before RNA extraction. TaqMan RT-qPCR assay was used to analyze the expression levels of miRNAs. Results: The results indicated no significant differences in the expression of miR-21 and miR-31 between different groups; however, in patients with active TB, the expression of miR-21 (P=0.03) and miR-31 (P=0.04) were significantly increased after stimulation with PPD compared to the unstimulated condition. The expression of miR-146 in response to PPD in both LTBI (P=0.02) and TB (P=0.03) groups compared to the HC group was increased. No significant differences were found in the expression level of miR-155 in response to PPD between LTBI and HC groups. However, the fold change was significantly higher in the TB group in comparison with the HC (P=0.03) and LTBI (P=0.05) groups. Conclusion: The results confirm the main role of miR-146 and miR-155 in TB infection and suggest a role for miR-146 and miR-155 as infection and activation markers in tuberculosis infection, respectively.

5.
Rep Biochem Mol Biol ; 11(4): 590-598, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37131892

RESUMEN

Background: Two newly identified proteins, EspB and EspC are involved in the pathogenesis of Mycobacterium tuberculosis. The objective of the present study was to evaluate the immunogenicity of recombinant EspC, EspB, and EspC/EspB fusion proteins in mice. Methods: BALB/c mice were immunized subcutaneously with recombinant EspC, EspB, and fusion EspC/EspB proteins, three times with along with Quil-A as an adjuvant. The cellular and humoral immune responses were evaluated by quantifying IFN-γ, IL-4, IgG, IgG1, and IgG2a antibodies against the antigens. Results: The results showed that the mice immunized with recombinant EspC, EspB, and EspC/EspB proteins did not produce IL-4, whereas IFN-γ was secreted in response to all three proteins. EspC/EspB group produced significant amounts of IFN-γ in response to stimulation with all the three recombinant proteins (P<0.001). In mice immunized with EspC, high levels of IFN-γ were detected in response to EspC/EspB, and EspC (P<0.0001); while mice immunized with EspB produced lower levels of IFN-γ in response to EspC/EspB, and EspB (P<0.05).Mice immunized with recombinant EspC, EspB, and EspC/EspB proteins exhibited significantly high levels of IgG and IgG2a/IgG1 ratio (P< 0.001). Moreover, high levels of IgG and IgG2a were detected in the sera of mice immunized with EspC/EspB fusion protein. Conclusions: All the three recombinant proteins induced Th1-type immune responses in mice against EspB and EspC; however, EspC/EspB protein is more desirable due to the presence of epitopes from both EspC and EspB proteins and the production of immune responses against both.

6.
Sci Rep ; 13(1): 8766, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253833

RESUMEN

Sand fly salivary proteins have immunomodulatory and anti-inflammatory features; hence, they are proven to perform important roles in the early establishment of Leishmania parasite in the vertebrate host. Among them, salivary apyrase with anti-hemostatic properties has a crucial role during the blood meal process. In the present study, a Genome-Walking method was used to characterize a full-length nucleotide sequence of Phlebotomus (P.) kandelakii apyrase (Pkapy). Bioinformatics analyses revealed that Pkapy is a ~ 36 kDa stable and hydrophilic protein that belongs to the Cimex family of apyrases. Moreover, recombinant proteins of Pkapy and P. papatasi apyrase (Ppapy) were over-expressed in Escherichia coli BL2 (DE3) and their antigenicity in BALB/c mice was evaluated. Dot-blot and ELISA results indicated that both recombinant apyrases could induce antibodies in BALB/c. Moreover, a partial cross-reactivity between Pkapy and Ppapy was found. In vitro stimulation of splenocytes from immunized mice with the recombinant proteins indicated cross-reactive T cell proliferative responses. Cytokine analysis revealed significant production of IFN-γ (p < 0.001) and IL-10 (p < 0.01) in response to Pkapy. In conclusion, the full-length nucleotide sequence and molecular characteristics of Pkapy were identified for the first time. Immunologic analyses indicated that Pkapy and Ppapy are immunogenic in BALB/c mice and show partial cross-reactive responses. The immunity to Pkapy was found to be a Th1-dominant response that highlights its potential as a component for an anti-Leishmania vaccine.


Asunto(s)
Phlebotomus , Psychodidae , Animales , Ratones , Phlebotomus/genética , Apirasa/metabolismo , Ratones Endogámicos BALB C , Psychodidae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas y Péptidos Salivales
7.
Infect Genet Evol ; 112: 105449, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37225067

RESUMEN

Gonorrhea is an urgent antimicrobial resistance threat and its therapeutic options are continuously getting restricted. Moreover, no vaccine has been approved against it so far. Hence, the present study aimed to introduce novel immunogenic and drug targets against antibiotic-resistant Neisseria gonorrhoeae strains. In the first step, the core proteins of 79 complete genomes of N. gonorrhoeae were retrieved. Next, the surface-exposed proteins were evaluated from different aspects such as antigenicity, allergenicity, conservancy, and B-cell and T-cell epitopes to introduce promising immunogenic candidates. Then, the interactions with human Toll-like receptors (TLR-1, 2, and 4), and immunoreactivity to elicit humoral and cellular immune responses were simulated. On the other hand, to identify novel broad-spectrum drug targets, the cytoplasmic and essential proteins were detected. Then, the N. gonorrhoeae metabolome-specific proteins were compared to the drug targets of the DrugBank, and novel drug targets were retrieved. Finally, the protein data bank (PDB) file availability and prevalence among the ESKAPE group and common sexually transmitted infection (STI) agents were assessed. Our analyses resulted in the recognition of ten novel and putative immunogenic targets including murein transglycosylase A, PBP1A, Opa, NlpD, Azurin, MtrE, RmpM, LptD, NspA, and TamA. Moreover, four potential and broad-spectrum drug targets were identified including UMP kinase, GlyQ, HU family DNA-binding protein, and IF-1. Some of the shortlisted immunogenic and drug targets have confirmed roles in adhesion, immune evasion, and antibiotic resistance that can induce bactericidal antibodies. Other immunogenic and drug targets might be associated with the virulence of N. gonorrhoeae as well. Thus, further experimental studies and site-directed mutations are recommended to investigate the role of potential vaccine and drug targets in the pathogenesis of N. gonorrhoeae. It seems that the efforts for proposing novel vaccines and drug targets appear to be paving the way for a prevention-treatment strategy against this bacterium. Additionally, a combination of bactericidal monoclonal antibodies and antibiotics is a promising approach to curing N. gonorrhoeae.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Vacunología , Gonorrea/tratamiento farmacológico , Gonorrea/prevención & control , Gonorrea/microbiología , Proteínas de la Membrana/genética
8.
Microb Pathog ; 174: 105882, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403713

RESUMEN

BACKGROUNDS: The prevalence of infections associated with multi-drug resistant (MDR) Acinetobacter baumannii is increasing worldwide. Therefore, the introduction of effective vaccines against this bacterium seems necessary. METHODS: AbOmpA and DcaP-like protein were selected as promising and putative immunogenic candidates based on previous in silico studies. Three formulations including AbOmpA, DcaP-like protein, and AbOmpA + DcaP-like protein were injected into C57BL/6 mice three times with Alum adjuvant. The specific production of IgG antibodies (e.g. total IgG, IgG1 and IgG2c) and cytokines (e.g. IL-4, IL-6, and IL-17A), were evaluated. LD50% of MDR A. baumannii ST2Pas was measured using Probit's method. After the challenge with bacteria, a decrease in bacterial loads (DLs) in the lung and spleen of mice was measured. Then serum bactericidal assay was performed to determine the function of antibodies on day 42. In addition, histopathological examinations of the spleen and lung, the number of macrophage and neutrophil, as well as the rate of lymphocyte infiltration were assessed. RESULTS: The highest level of total IgG was reported in the group immunized with DcaP-like protein on day 42. The survival rate of mice was 80% in the AbOmpA immunized group and 100% for the rest of two groups. DLs in the spleen of mice immunized with AbOmpA, DcaP-like protein, and combination form were 3.5, 3, and 3.4 Log10 (CFU/g), respectively. While in the lung, the DLs were 7.5 Log10 (CFU/g) for the AbOmpA group and 5 for the rest of two groups. The levels of IL-6, IL-4, and IL-17A were significantly decreased in all immunized groups after the bacterial challenge (except for IL-17A in the group of AbOmpA). The bactericidal effect of antibodies against DcaP-like protein was more effective. No histopathological damage was observed in the combination immunized group. The DcaP-like protein was more effective in neutrophil and macrophage deployment and decreased lymphocyte infiltration. CONCLUSION: The results of immunization with AbOmpA + DcaP-like protein induced a protective reaction against the sepsis infection of MDR A. baumannii. It seems that in the future, these proteins can be considered as promising components in the development of the A. baumannii vaccine.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Sepsis , Animales , Ratones , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-17 , Interleucina-4 , Interleucina-6 , Proteínas de la Membrana Bacteriana Externa , Infecciones por Acinetobacter/microbiología , Ratones Endogámicos C57BL , Inmunización , Antibacterianos , Inmunoglobulina G , Sepsis/microbiología , Vacunas Bacterianas
9.
Iran J Pharm Res ; 21(1): e126559, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36060914

RESUMEN

Background: Acinetobacter baumannii is an important nosocomial pathogen causing high morbidity and mortality in immunocompromised patients with prolonged hospitalization. Multidrug-resistant A. baumannii infections are on the rise worldwide. Therefore, the discovery of an effective vaccine against this bacterium seems necessary as a cost-effective and preventive strategy. Methods: In this present study, 35 genomes of A. baumannii strains were considered, and the extracellular proteins were selected, maximally having one transmembrane helix with high adhesion probability and no similarity to host proteins, as immunogenic candidates using the web tool Vaxign. Subsequently, the role of these selected proteins in bacterial pathogenesis was investigated using VICMpred. Then, the major histocompatibility complex class II, linear B-cell epitopes, and conservation of epitopes were identified using the Immune Epitope Database, BepiPred, and Epitope Conservancy Analysis, respectively. Finally, the B-cell discontinuous epitopes of each protein were predicted using ElliPro and plotted on the three-dimensional structure (3D) of the proteins. The role of the unknown proteins was predicted using the STRING database. Results: In this study, eight acceptable immunogenic candidates, including FilF, FimA, putative acid phosphatase, putative exported protein, subtilisin-like serine protease, and three uncharacterized proteins, were identified in A. baumannii. Conclusions: The results of the STRING database showed that these three uncharacterized proteins play a role in nutrition (heme utilization), peptide bond cleavage (serine peptidases), and cellular processes (MlaD protein). Extracellular proteins might play a catalyst role in the outer membrane protein-based vaccine of A. baumannii. Furthermore, this study proposed a list of potent immunogenic candidates of extracellular proteins.

10.
Iran J Parasitol ; 17(2): 145-158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032738

RESUMEN

Background: Visceral leishmaniasis (VL) is a lethal parasitic disease, transmitted by sand fly vectors. Immunomodulatory properties of sand fly saliva proteins and their protective effects against Leishmania infection in pre-exposed animals suggest that a combination of an antigenic salivary protein along with a Leishmania antigen can be considered for designing a vaccine against leishmaniasis. Methods: Three different fusion forms of L. infantum hypothetical protein (LiHyV) in combination with Phlebotomus kandelakii salivary apyrase (PkanAp) were subjected to insilico analyses. Major Histocompatibility Complex (MHC) class I and II epitopes in both humans and BALB/c mice were predicted. Antigenicity, immunogenicity, epitope conservancy, toxicity, and population coverage were also evaluated. Results: Highly antigenic promiscuous epitopes consisting of truncated LiHyV (10-285) and full-length PkanAp (21-329) were identified in human and was named Model 1. This model contained 25 MHC-I and 141 MHC-II antigenic peptides which among them, MPANSDIRI and AQSLFDFSGLALDSN were fully conserved. LALDSNATV, RCSSALVSI, ALVSINVPL, SAVESGALF of MHC-I epitopes, and 28 MHC-II binding epitopes showed 60% conservancy among various clades. A population coverage with a rate of >75% in the Iranian population and >70% in the whole world was also identified. Conclusion: Based on this in-silico approach, the predicted Model 1 could potentially be used as a vaccine candidate against VL.

11.
Pathog Dis ; 80(1)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35704612

RESUMEN

Therapeutic human immunodeficiency virus (HIV) vaccines can boost the anti-HIV host immunity to control viral replication and eliminate viral reservoirs in the absence of anti-retroviral therapy. In this study, two computationally designed multiepitope Gag-Pol-Env-Nef-Rev and Hsp70-Gag-Pol-Env-Nef-Rev constructs harboring immunogenic and highly conserved HIV T cell epitopes were generated in E. coli as polypeptide vaccine candidates. Furthermore, the multiepitope gag-pol-env-nef-rev and hsp70-gag-pol-env-nef-rev DNA vaccine constructs were prepared and complexed with MPG cell-penetrating peptide. The immunogenicity of the multiepitope constructs were evaluated using the homologous and heterologous prime/boost strategies in mice. Moreover, the secretion of IFN-γ was assessed in infected lymphocytes in vitro. Our data showed that the homologous polypeptide regimens could significantly induce a mixture of IgG1 and IgG2a antibody responses, activate T cells to secret IFN-γ, IL-5, IL-10, and generate Granzyme B. Moreover, IFN-γ secretion was significantly enhanced in single-cycle replicable (SCR) HIV-1 virions-infected splenocytes in these groups compared to uninfected splenocytes. The linkage of heat shock protein 70 (Hsp70) epitopes to Gag-Pol-Env-Nef-Rev polypeptide in the homologous regimen increased significantly cytokines and Granzyme B levels, and IFN-γ secretion in virions-infected splenocytes. Briefly, both designed constructs in the homologous regimens can be used as a promising vaccine candidate against HIV infection.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Proteínas Virales/inmunología , Animales , Epítopos de Linfocito T , Escherichia coli/metabolismo , Granzimas , Proteínas HSP70 de Choque Térmico/genética , Humanos , Interferón gamma/metabolismo , Ratones , Linfocitos T , Productos del Gen nef del Virus de la Inmunodeficiencia Humana
12.
Sci Rep ; 12(1): 5376, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354847

RESUMEN

Interleukin-2 (IL-2) is an important cytokine in survival, expansion, function of CD8+ T cells and natural killer cells in immunotherapy of melanoma and renal cell carcinomas. Its severe toxicity following binding to its high affinity IL-2 receptor alpha (IL-2Rα) has restricted its application in cancer patients. In the present study, we investigated the antitumor efficacy and cytotoxicity of a mutated human IL-2 previously designed by selective amino acid substitutions, and its reduced affinity towards high-affinity IL-2Rα (CD25) was approved compared to the wild type IL-2 (wtIL-2). Furthermore, their ability to induce PBMC cell proliferation, and interferon-gamma secretion was compared. The mutant IL-2 also represented higher antitumor activity and more efficient cytotoxicity than wild type hIL-2. The developed mutant IL-2 can be an alternative tool in IL-2 associated immunotherapy of various cancers.


Asunto(s)
Interleucina-2 , Melanoma , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucina-2/farmacología , Células Asesinas Naturales/metabolismo , Leucocitos Mononucleares/metabolismo , Melanoma/metabolismo , Receptores de Interleucina-2/metabolismo
13.
PLoS One ; 17(2): e0264353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213635

RESUMEN

Although high-dose IL-2 has clear antitumor effects, severe side effects like severe toxicity and activation of Tregs by binding of IL-2 to high-affinity IL-2R, hypotension, and vascular leak syndrome limit its applications as a therapeutic antitumor agent. Here in this study, a rational computational approach was employed to develop and design novel triple-mutant IL-2 variants with the aim of improving IL-2-based immunotherapy. The affinity of the mutants towards IL-2Rα was further computed with the aid of molecular dynamic simulations and umbrella sampling techniques and the obtained results were compared to those of wild-type IL-2. In vitro experiments by flow cytometry showed that the anti-CD25 mAb was able to bind to PBMC cells even after mutant 2 preincubation, however, the binding strength of the mutant to α-subunit was less than of wtIL-2. Additionally, reduction of IL-2Rα subunit affinity did not significantly disturb IL-2/IL2Rßγc subunits interactions.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-2 , Leucocitos Mononucleares/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Electricidad Estática , Humanos , Interleucina-2/química , Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/química , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Unión Proteica
15.
Iran Biomed J ; 26(2): 99-109, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090305

RESUMEN

The heterogeneity of CD4+ T cells has been investigated since the late 1970s, when their Th1 and Th2 subsets were coined. Later studies on the cutaneous form of the Leishmaniasis were focused on the experimental models of Leishmania major infection using the susceptible BALB/c and the resistant C57BL/6 mice. At the early 21st century, the regulatory T-cells subpopulation was introduced and its role in concomitant immunity, responsible for lifelong resistance of the host to the reinfection was proposed. Subsequent studies, mainly focused on the visceral form of the infection pointed to the role of IL-17, produced by Th17 subset of CD4+ T cells that along the neutrophils were shown to have important yet equivocal functions in protection against or exacerbation of the infection. Altogether, the current knowledge indicates that the above four subsets could orchestrate the immune, the regulatory and the inflammatory responses of the host against different forms of leishmaniases.


Asunto(s)
Inmunidad Adaptativa , Linfocitos T CD4-Positivos/inmunología , Inmunidad Innata , Leishmaniasis Cutánea/inmunología , Leishmaniasis Visceral/inmunología , Subgrupos de Linfocitos T/inmunología , Humanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-35080506

RESUMEN

Cancer is a multifactorial disease that is the second leading cause of death after cardiovascular disease in the world. In recent years, microbiota's role in the regulation and homeostasis of the immune system has been considered. Moreover, the immune system can affect the microbiota content. These interactions are critical to the functioning of the immune system. Numerous studies in animal and human models have shown the association of changes in microbiota components with the formation of an inhibitory microenvironment in the tumor and its escape from the immune system. Microbiota also plays a crucial role in the success of various anti-tumor treatments, and its modification leads to success in cancer treatment. The success of anti-tumor therapies that directly target the immune system, such as immune checkpoint blockade and T cell therapy, is also affected by the patient's microbiota composition. It seems that in addition to examining the patient's genetics, precision medicine should pay attention to the patient's microbiota in choosing the appropriate treatment method, and together with usual anti-tumor therapies, microbiota may be modified. This review discusses various aspects of the relationship between microbiota and anti-tumor immunity and its successful treatment.

17.
Iran J Microbiol ; 14(6): 792-801, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36721440

RESUMEN

Leishmaniases are a group of vector-borne parasitic diseases transmitted through the infected sand flies. Leishmania parasites are inoculated into the host skin along with sand fly saliva. The sand fly saliva consists of biologically active molecules with anticoagulant, anti-inflammatory, and immunomodulatory properties. Such properties help the parasite circumvent the host's immune responses. The salivary compounds support the survival and multiplication of the parasite and facilitate the disease progression. It is documented that frequent exposure to uninfected sand fly bites produces neutralizing antibodies against specific salivary proteins and further activates the cellular mechanisms to prevent the establishment of the disease. The immune responses due to sand fly saliva are highly specific and depend on the composition of the salivary molecules. Hence, thorough knowledge of these compounds in different sand fly species and information about their antigenicity are paramount to designing an effective vaccine. Herein, we review the composition of the sand fly saliva, immunomodulatory properties of some of its components, immune responses to its proteins, and potential vaccine candidates against leishmaniases.

18.
Iran J Parasitol ; 16(3): 348-356, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630579

RESUMEN

BACKGROUND: We aimed to investigate the potential effects of BCG and imiquimod on improvement of current experimental L. major vaccine against dogs in an endemic area of Zoonotic visceral leishmaniasis (ZVL) in Iran. METHODS: During 2012 till 2014, seven mixed-breed shepherd dogs with no anti-Leishmania antibodies and no response to Leishmanin reagent were immunized with 2 doses of alum-precipitated autoclaved L. major (Alum-AML) while BCG and imiquimod (for skin pre-treatment) were used as adjuvants. The productions of a few characteristic cytokines of T-helper immune responses and the development of delayed-type hypersensitivity (DTH) of the immunized animals were then evaluated, up to 300 days. Blood samples were collected at 0, 30, 80 and 300 d post-vaccination and the concentrations of IFN-γ, IL10, IL-12 and TGF-ß cytokines secreted from PBMCs at these time-points were quantified by ELISA. DTH was evaluated by Leishmanin skin test (LST). RESULTS: Although a similar LST conversion was observed at all time-points, the cytokine measurement results indicated significantly higher levels of IFN-γ at day 80 and elevated levels of IL-10 at days 80 and 300, post-vaccination. Moreover, a significantly higher IFN-γ/IL-10 ratio was observed at day 30 post-vaccination compared to the other time-points. CONCLUSION: Although a Th1-like response could be observed at day 30 post-vaccination, the development of cytokine profiles was inclined toward mixed Th1 and Th2 responses at days 80 and 300 post-vaccination. This situation may indicate the requirement of an additional boosting by this Alum-AML formula, in order to induce long-lasting protection against ZVL.

19.
Artículo en Inglés | MEDLINE | ID: mdl-34375301

RESUMEN

The commensal microflora collection known as microbiota has an essential role in maintaining the host's physiological homeostasis. The microbiota has a vital role in induction and regulation of local and systemic immune responses. On the other hand, the immune system involves maintaining microbiota compositions. Optimal microbiota-immune system cross-talk is essential for protective responses to pathogens and immune tolerance to self and harmless environmental antigens. Any change in this symbiotic relationship may cause susceptibility to diseases. The association of various cancers and auto-immune diseases with microbiota has been proven. Here we review the interaction of immune responses to gut microbiota, focusing on innate and adaptive immune system and disease susceptibility.

20.
Biotechnol Lett ; 43(8): 1513-1550, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33987776

RESUMEN

OBJECTIVES: Epitope-driven vaccines carrying highly conserved and immunodominant epitopes have emerged as promising approaches to overcome human immunodeficiency virus-1 (HIV-1) infection. METHODS: Two multiepitope DNA constructs encoding T cell epitopes from HIV-1 Gag, Pol, Env, Nef and Rev proteins alone and/or linked to the immunogenic epitopes derived from heat shock protein 70 (Hsp70) as an immunostimulatory agent were designed. In silico analyses were applied including MHC-I and MHC-II binding, MHC-I immunogenicity and antigen processing, population coverage, conservancy, allergenicity, toxicity and hemotoxicity. The peptide-MHC-I/MHC-II molecular docking and cytokine production analyses were carried out for predicted epitopes. The selected highly immunogenic T-cell epitopes were then used to design two multiepitope fusion constructs. Next, prediction of the physicochemical and structural properties, B cell epitopes, and constructs-toll-like receptors (TLRs) molecular docking were performed for each construct. Finally, the eukaryotic expression plasmids harboring totally 12 cytotoxic T Lymphocyte (CTL) and 10 helper T lymphocytes (HTL) epitopes from HIV-1 proteins (i.e., pEGFP-N1-gag-pol-env-nef-rev), and linked to 2 CTL and 2 HTL epitopes from Hsp70 (i.e., pEGFP-N1-hsp70-gag-pol-env-nef-rev) were generated and transfected into HEK-293 T cells for evaluating the percentage of multiepitope peptides expression using flow cytometry and western blotting. RESULTS: The designed DNA constructs could be successfully expressed in mammalian cells. The expression rates of Gag-Pol-Env-Nef-Rev-GFP and Hsp70-Gag-Pol-Env-Nef-Rev-GFP were about 56-60% as the bands of ~ 63 and ~ 72 kDa confirmed in western blotting, respectively. CONCLUSION: The combined in silico/in vitro methods indicated two multiepitope constructs can be produced and used as probable effective immunogens for HIV-1 vaccine development.


Asunto(s)
Vacunas contra el SIDA , Epítopos de Linfocito T/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Vacunas de ADN , Animales , Simulación por Computador , Epítopos de Linfocito T/metabolismo , Células HEK293 , VIH-1/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Modelos Moleculares , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...