Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(12): 7203-7213, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266935

RESUMEN

Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospherically relevant complexes of IO with N2, CO, CO2 and H2O, where their structural and spectroscopic properties and their interaction energies are computed. Calculations are carried out by means of ab initio post Hartree-Fock (RCCSD(T) and RMP2) methods and density functional theory DFT (PBE0 and M05-2X) based approaches with and without the inclusion of dispersion correction. After comparison to RCCSD(T), we highlight the good performance of M05-2X(+D3) DFT in describing the bonding between IO and X (X = N2, CO, CO2, H2O). Moreover, we found that the IO-X (X = N2, CO, CO2, H2O) complexes are formed by non-covalent interactions between the two monomers. In sum, we characterized two types of complexes: I-bonded and O-bonded, where the former is more stable. The atmospheric implications of the present findings are also discussed such as in the formation of the iodine oxide particles (IOPs).

2.
J Chem Phys ; 154(9): 094304, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685174

RESUMEN

A new 3D-potential energy surface (3D-PES) for the weakly bound CH3Cl-He complex is mapped in Jacobi coordinates. Electronic structure calculations are performed using the explicitly correlated coupled clusters with single, double, and perturbative triple excitations approach in conjunction with the aug-cc-pVTZ basis set. Then, an analytical expansion of this 3D-PES is derived. This PES shows three minimal structures for collinear C-Cl-He arrangements and for He located in between two H atoms, in the plane parallel to the three H atoms, which is near the center of mass of CH3Cl. The latter form corresponds to the global minimum. Two maxima are also found, which connect the minimal structures. We then evaluated the pressure broadening coefficients of the spectral lines of CH3Cl in a helium bath based on our ab initio potential. Satisfactory agreement with experiments was observed, confirming the good accuracy of our 3D-PES. We also derived the bound rovibronic levels for ortho- and para-CH3Cl-He dimers after quantum treatment of the nuclear motions. For both clusters, computations show that although the ground vibrational state is located well above the intramolecular isomerization barriers, the rovibronic levels may be associated with a specific minimal structure. This can be explained by vibrational localization and vibrational memory effects.

3.
Phys Chem Chem Phys ; 22(2): 740-747, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31833508

RESUMEN

Iodine oxide (IO) is an important tropospheric molecule. In the present paper, we mapped the potential energy surfaces (PESs) of the doubly degenerate IO(X2Π)-Ar van der Waals system using single- and double-excitation coupled cluster approaches with non-iterative perturbation treatment of triple excitations [RCCSD(T)] extrapolated to the complete basis set (CBS) limit. In addition to bent local minima, we identified a linear Ar-IO complex as a global minimum. Afterwards, we performed scattering calculations on these PESs, considering the non-zero spin-orbit contribution and the Renner-Teller effect. The integral cross-sections exhibit an oscillatory structure vs. the final rotational state, as already observed for the NO(X2Π)-Ar system. Moreover, computations reveal that the Ar-IO complex is stable toward dissociation into IO and Ar. Therefore, it can be found in the atmosphere and participates in iodine compound physical chemical processes occurring there.

4.
J Chem Phys ; 143(3): 034303, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26203023

RESUMEN

We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS(-) and HSN(-) together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH(-) + N, SN(-) + H, SN + H(-), NH + S(-), and NH(-) + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN(-) and H or SH(-) and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH(-), SN(-), and NH(-) lead either to the formation of HNS(-) or HSN(-) in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH(-), SN(-), and NH(-), have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN(-) and HNS(-) should be incorporated into H2S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.


Asunto(s)
Aniones/química , Hidrógeno/química , Nitrógeno/química , Azufre/química , Fenómenos Astronómicos , Catálisis , Electrones , Hemo/química , Nitritos/química , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...