Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Pharm Sci ; 72(1): 140-4, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20582209

RESUMEN

Antioxidant activity test using two different methods namely 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothialozinesulfonate) diammonium salt free radical scavenging test has been carried out on three Cameroonian plant extracts used in the treatment of intestinal and infectious diseases: Pittosporum mannii Hook f. (Pittosporaceae), Vepris heterophylla R. Letouzey (Rutaceae) and Ricinodendron heudelotii (Baill) Pierre ex Pax (Euphorbiaceae). Results of this study in the 2,2-diphenyl-1-picrylhydrazyl scavenging test show that the ethyl acetate extract of P. mannii and the methanol extract of V. heterophylla exhibit high free radical scavenging activities with IC(50) values of 177.74 and 204.69 mug/ml, respectively while the methanol/dichloromethane (1+1) extract of R. heudelotii showed weak free radical scavenging activities as compared to Trolox (939.19 mug/ml) used as standard. In the same manner, 2,2'-azinobis(3-ethylbenzothialozinesulfonate) diammonium salt radical scavenging test of these extracts was in accordance of the result of 2,2-diphenyl-1-picrylhydrazyl test. The antioxidant properties of these extracts probably explain partly, the use of these plants in traditional medicine for the treatment of infectious diseases and inflammations.

2.
East Afr Med J ; 83(3): 102-9, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16771107

RESUMEN

OBJECTIVE: To evaluate some locally available plants for their molluscicidal activity on Bulinus camerunensis and B. truncatus (slender form). DESIGN: Experimental studies. SETTING: Ndongo stream near the University of Buea and the University of Buea Life Sciences Laboratory. SUBJECTS: Evaluation of molluscicidal activity on snails of Bulinus camerunensis and B. truncatus (slender form). MAIN OUTCOME MEASURES: Plant extracts with molluscicidal activity determined. Determination of LC50, LC90 and LC100 of the potent plant extracts. Application of the extracts on aquaria-reared snails. Semi-field application of extracts. RESULTS: A preliminary screening test using 10,000 ppm solution of the water extracts of thirteen plants revealed that 61.5% (8/13) of the plants investigated had molluscicidal properties, with snail mortality rates above 90%. Extracts of Nicotiana tabacum, Aframomum citratum, A. melegueta, Curcuma domestica and Solanum scabrum killed 100% of the snails after twenty four hours exposure. B. camerunensis was more susceptible to the water extracts than B. truncatus. The LC50, LC90 and LC100 of the different plant extracts against B. camerunensis were generally lower than those against B. truncatus. The concentrations that produced 50%, 90% and 100% snail mortalities were lower with the methanol extracts than with water extracts, indicating that the methanol extracts were more toxic. to the snails than the water extracts. Generally, the eggs were more susceptible to the extracts than the young and adult snails. Application of the water extracts at LC 100 on snails reared in aquaria and under semi-field conditions revealed that N. tabacum could kill up to 100% of the snails in aquaria and 61.25% under semi-field conditions. CONCLUSION: Eight plant species with molluscicidal activity were identified, among which Nicotiana tabacum, Aframomum citratum, A. melegueta, Solanum scabrum and Curcuma domestica presented the highest activity. B. camerunensis was more susceptible to all the plant extracts tested than B. truncatus, and the methanol extracts proved more toxic than the water extracts. Semi-field testing of potent extracts showed promise, with N. tabacum having the highest effects on the snails.


Asunto(s)
Bulinus/efectos de los fármacos , Curcuma , Moluscocidas/farmacología , Nicotiana , Extractos Vegetales/farmacología , Solanum , Zingiberaceae , Animales , Bulinus/clasificación
3.
Development ; 128(18): 3435-44, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11566850

RESUMEN

Although the molecular pathways that pattern the early embryo of Drosophila melanogaster are well understood, how these pathways differ in other types of insect embryo remains largely unknown. We have examined the expression of three markers of early patterning in the embryo of the African plague locust Schistocerca gregaria, an orthopteran insect that displays a mode of embryogenesis very different from that of Drosophila. Transcripts of the caudal gene are expressed maternally and are present in all cells that aggregate to form the early embryonic rudiment. First signs of a posterior-to-anterior gradient in the levels of caudal transcript appear in the early heart-stage embryo, shortly before gastrulation. This gradient rapidly resolves to a defined expression domain marking segment A11. The decapentaplegic (dpp) gene, which encodes a transforming growth factor beta family ligand, is first expressed in a circle of cells that delimit the margins of the embryonic primordium, where embryonic and extra-embryonic tissues abut. Patterned transcription of wingless reveals that the first segments are delineated in the Schistocerca embryo substantially earlier than previously thought, at least 14-16 hours before the onset of engrailed expression. By the late heart-stage, gnathal and thoracic segments are all defined. Thus, with respect to the molecular patterning of segments, the short germ Schistocerca embryo differs little from intermediate germ embryos. The expression of these marker genes suggests that embryonic pattern formation in the grasshopper occurs as cells move together to form the blastodisc.


Asunto(s)
Tipificación del Cuerpo , Saltamontes/embriología , Proteínas de Homeodominio/aislamiento & purificación , Proteínas de Insectos/aislamiento & purificación , Factores de Transcripción , Factor de Crecimiento Transformador beta/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/aislamiento & purificación , ARN Mensajero/aislamiento & purificación , Homología de Secuencia de Aminoácido , Distribución Tisular , Factor de Crecimiento Transformador beta/genética , Proteína Wnt1
4.
Curr Biol ; 11(18): 1473-8, 2001 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-11566109

RESUMEN

The Drosophila gene fushi tarazu (ftz) encodes a homeodomain-containing transcriptional regulator (Ftz) required at several stages during development. Drosophila melanogaster ftz (Dm-ftz) is first expressed in seven stripes defining alternate parasegments of the embryo--a "pair-rule" segmentation function [1, 2]. It is then expressed in specific neural precursor cells in the central nervous system and finally in the developing hindgut [3]. An Orthopteran ortholog of ftz (Sg-ftz, formally Dax) has been isolated from the grasshopper Schistocerca gregaria [4]. The pattern of Sg-ftz expression in Schistocerca embryos suggests that some developmental roles of the ftz gene are likely to be conserved between these two species (e.g., CNS functions) while others may have diverged (e.g., segmentation functions). To test whether the function of the Ftz protein itself differs between these two species, here we compare the functions of Sg-Ftz and Dm-Ftz proteins by expressing both in Drosophila embryos. Sg-ftz mimics only poorly several segmentation roles of Dm-ftz (engrailed activation, wingless repression, and embryonic cuticle transformation). However, the two proteins are similarly active in the rescue of a CNS-specific ftz mutant. These findings argue that this ftz CNS function is mediated by conserved parts of the protein, while efficient pair-rule function requires sequences present specifically in the Drosophila protein.


Asunto(s)
Evolución Molecular , Proteínas de Homeodominio/fisiología , Proteínas de Insectos/fisiología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/embriología , Fase de Segmentación del Huevo , Proteínas de Drosophila , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Factores de Transcripción Fushi Tarazu , Saltamontes/genética , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Factores de Transcripción/genética
5.
Curr Biol ; 11(10): 759-63, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11378385

RESUMEN

The arthropods are the most speciose, and among the most morphologically diverse, of the animal phyla. Their evolution has been the subject of intense research for well over a century, yet the relationships among the four extant arthropod subphyla - chelicerates, crustaceans, hexapods, and myriapods - are still not fully resolved. Morphological taxonomies have often placed hexapods and myriapods together (the Atelocerata) [1, 2], but recent molecular studies have generally supported a hexapod/crustacean clade [2-9]. A cluster of regulatory genes, the Hox genes, control segment identity in arthropods, and comparisons of the sequences and functions of Hox genes can reveal evolutionary relationships [10]. We used Hox gene sequences from a range of arthropod taxa, including new data from a basal hexapod and a myriapod, to estimate a phylogeny of the arthropods. Our data support the hypothesis that insects and crustaceans form a single clade within the arthropods to the exclusion of myriapods. They also suggest that myriapods are more closely allied to the chelicerates than to this insect/crustacean clade.


Asunto(s)
Artrópodos/genética , Genes Homeobox , Filogenia , Animales , Artrópodos/clasificación
7.
Proc Natl Acad Sci U S A ; 97(9): 4438-41, 2000 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-10781039

RESUMEN

The expression patterns of developmental genes provide new markers that address the homology of body parts and provide clues as to how body plans have evolved. Such markers support the idea that insect wings evolved from limbs but refute the idea that insect and crustacean jaws are fundamentally different in structure. They also confirm that arthropod tagmosis reflects underlying patterns of Hox gene regulation but they do not yet resolve to what extent Hox expression domains may serve to define segment homologies.


Asunto(s)
Artrópodos/clasificación , Artrópodos/genética , Evolución Biológica , Genes Homeobox , Variación Genética , Animales , Artrópodos/crecimiento & desarrollo , Tipificación del Cuerpo , Fósiles
8.
Development ; 127(1): 97-107, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10654604

RESUMEN

The Drosophila haltere is a much reduced and specialised hind wing, which functions as a balance organ. Ultrabithorax (Ubx) is the sole Hox gene responsible for the differential development of the fore-wing and haltere in Drosophila. Previous work on the downstream effects of Ubx has focused on the control of pattern formation. Here we provide the first detailed description of cell differentiation in the haltere epidermis, and of the developmental processes that distinguish wing and haltere cells. By the end of pupal development, haltere cells are 8-fold smaller in apical surface area than wing cells; they differ in cell outline, and in the size and number of cuticular hairs secreted by each cell. Wing cells secrete only a thin cuticle, and undergo apoptosis within 2 hours of eclosion. Haltere cells continue to secrete cuticle after eclosion. Differences in the shape of wing and haltere cells reflect differences in the architecture of the actin cytoskeleton that become apparent between 24 and 48 hours after puparium formation. We show that Ubx protein is not needed later than 6 hours after puparium formation to specify these differences, though it is required at later stages for the correct development of campaniform sensilla on the haltere. We conclude that, during normal development, Ubx protein expressed before pupation controls a cascade of downstream effects that control changes in cell morphology 24-48 hours later. Ectopic expression of Ubx in the pupal wing, up to 30 hours after puparium formation, can still elicit many aspects of haltere cell morphology. The response of wing cells to Ubx at this time is sensitive to both the duration and level of Ubx exposure.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Factores de Transcripción , Alas de Animales/crecimiento & desarrollo , Animales , Diferenciación Celular , Tamaño de la Célula , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Pupa/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alas de Animales/citología
9.
Dev Genes Evol ; 210(7): 329-36, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11180839

RESUMEN

Studies of somitogenesis in vertebrates have identified a number of genes that are regulated by a periodic oscillator that patterns the pre-somitic mesoderm. One of these genes, hairy, is homologous to a Drosophila segmentation gene that also shows periodic spatial expression. This, and the periodic expression of a zebrafish homologue of hairy during somitogenesis, has suggested that insect segmentation and vertebrate somitogenesis may use similar molecular mechanisms and possibly share a common origin. In chicks and mice expression of the lunatic fringe gene also oscillates in the presomitic mesoderm. Fringe encodes an extracellular protein that regulates Notch signalling. This, and the finding that mutations in Notch or its ligands disrupt somite patterning, suggests that Notch signalling plays an important role in vertebrate somitogenesis. Although Notch signalling is not known to play a role in the formation of segments in Drosophila, we reasoned that it might do so in other insects such as the grasshopper, where segment boundaries form between cells, not between syncytial nuclei as they do in Drosophila. Here we report the cloning of a single fringe gene from the grasshopper Schistocerca. We show that it is not detectably expressed in the forming trunk segments of the embryo until after segment boundaries have formed. We conclude that fringe is not part of the mechanism that makes segments in Schistocerca. Thereafter it is expressed in a pattern which shows that it is a downstream target of the segmentation machinery and suggests that it may play a role in segment morphogenesis. Like its Drosophila counterpart, Schistocerca fringe is also expressed in the eye, in rings in the legs, and during oogenesis, in follicle cells.


Asunto(s)
Saltamontes/embriología , Proteínas de Insectos/metabolismo , Morfogénesis , N-Acetilglucosaminiltransferasas , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Clonación Molecular , Proteínas de Drosophila , Extremidades , Ojo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Saltamontes/genética , Hibridación in Situ , Proteínas de Insectos/química , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Ovario/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia
10.
Evol Dev ; 2(5): 261-70, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11252555

RESUMEN

In insects, a key step in the early patterning of the egg is to distinguish the primordium of the embryo proper from those regions that will form extra-embryonic membranes. In Drosophila, where these processes are well understood, the structure of the extra-embryonic membranes is highly derived. The distinct amnion and serosa typical of lower insects is replaced by a single, fused, and much reduced membrane, the amnioserosa, which never secretes an embryonic cuticle. We have used the Zen gene as a marker to study the formation of the extra-embryonic membranes, and other aspects of early embryonic patterning, in the grasshopper Schistocerca gregaria (African Plague Locust). Zen genes are derived from Hox genes, but in Drosophila they appear to have lost any role in patterning the A/P axis of the embryo; instead, they are involved in D/V patterning and the specification of the extra-embryonic membranes. We show that the Schistocerca zen gene is expressed during embryogenesis in three distinct phases. The first of these is during cleavage, when Sgzen is transiently expressed in all energids that reach the cell surface. The second phase of expression initiates in a ring of "necklace cells" that surround the forming embryo, and demarcate the boundary between the amnion and serosa. This leads to expression throughout the serosa. The final phase of expression is in the amnion, after this has separated from the serosa. This complex pattern implies that the role of Sgzen in Schistocerca is not limited solely to the specification of cell identity in the extra-embryonic membranes. We also report that the Schistocerca zen gene is expressed maternally, unlike its Drosophila and Tribolium counterparts. A distinct maternal transcript, and maternal Zen protein, accumulate in the developing oocyte from early post-meiotic stages. They remain uniformly distributed in the oocyte cytoplasm until late vitellogenic stages, when the protein and RNA become somewhat concentrated at the egg cortex and in the posterior polar cap of the oocyte, probably by passive exclusion from the yolk. The cytoplasmic localization of Sgzen protein in the oocyte, and at some stages during embryogenesis, implies that nuclear exclusion of this transcription factor is specifically controlled.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Saltamontes/genética , Proteínas de Homeodominio/genética , Cigoto/metabolismo , Animales , Tipificación del Cuerpo , Femenino , Saltamontes/embriología , Proteínas de Insectos
11.
Curr Biol ; 9(16): R591-4, 1999 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-10469587

RESUMEN

The Drosophila bicoid gene is well known for encoding a protein that forms a morphogenetic gradient with a key role in anterior patterning of the fruitfly embryo. Recent results suggest the evolution of bicoid might have involved dramatic changes in function - essentially the invention of a new regulatory protein.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/fisiología , Proteínas de Drosophila , Insectos/embriología , Animales , Drosophila/embriología , Embrión no Mamífero/química , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Proteínas de Insectos/fisiología , Proteínas Represoras/metabolismo , Transactivadores/fisiología , Tribolium/embriología
12.
Nature ; 399(6738): 772-6, 1999 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-10391241

RESUMEN

Understanding the early evolution of animal body plans requires knowledge both of metazoan phylogeny and of the genetic and developmental changes involved in the emergence of particular forms. Recent 18S ribosomal RNA phylogenies suggest a three-branched tree for the Bilateria comprising the deuterostomes and two great protostome clades, the lophotrochozoans and ecdysozoans. Here, we show that the complement of Hox genes in critical protostome phyla reflects these phylogenetic relationships and reveals the early evolution of developmental regulatory potential in bilaterians. We have identified Hox genes that are shared by subsets of protostome phyla. These include a diverged pair of posterior (Abdominal-B-like) genes in both a brachiopod and a polychaete annelid, which supports the lophotrochozoan assemblage, and a distinct posterior Hox gene shared by a priapulid, a nematode and the arthropods, which supports the ecdysozoan clade. The ancestors of each of these two major protostome lineages had a minimum of eight to ten Hox genes. The major period of Hox gene expansion and diversification thus occurred before the radiation of each of the three great bilaterian clades.


Asunto(s)
Evolución Biológica , Genes Homeobox , Invertebrados/genética , Secuencia de Aminoácidos , Animales , Invertebrados/clasificación , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
13.
Curr Biol ; 8(19): R676-8, 1998 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-9768351

RESUMEN

We still have little idea how the differential expression of one 'master' gene can control the morphology of complex structures, but recent studies suggest that the Drosophila Hox gene Ultrabithorax micromanages segment development by manipulating a large number of different targets at many developmental stages.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/fisiología , Morfogénesis/fisiología , Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Proteínas de Insectos/fisiología , Morfogénesis/genética , Transcripción Genética , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo
14.
Int J Dev Biol ; 42(3): 445-51, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9654030

RESUMEN

Significant changes have occurred in the developmental role of Hox genes, even within groups of arthropods that already have complex body plans and many different segment types. This is hard to reconcile with the 'selector gene' model for Hox gene function. Selector genes act as stable binary switches that direct lineages of cells to adopt alternative developmental fates. This model suggests that the regulation of selector genes can only evolve through mutations that alter the identity of whole developmental compartments -in the case of Hox genes, whole segments. Once segments have evolved distinct morphology and function, such mutations will result in dramatic homeotic transformations that are unlikely to be tolerated by natural selection. Thus we would expect the developmental role of these "master control genes" to become frozen as body plans become more complex. I argue for a revised model for the role and regulation of the Hox genes. This provides alternative mechanisms for evolutionary change, that may lead to incremental changes in segment morphology. The summation of such changes over long periods of time would result in differences in Hox gene function between taxa comparable to the effects of gross homeotic mutations, without the need to invoke the selective advantage of hopeful monsters.


Asunto(s)
Anomalías Múltiples/genética , Tipificación del Cuerpo/genética , Genes Homeobox/fisiología , Animales , Drosophila/embriología , Drosophila/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes de Insecto/fisiología , Genes Reguladores/fisiología
15.
Cell ; 92(2): 153-5, 1998 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-9458039
17.
Development ; 124(14): 2761-8, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9226447

RESUMEN

In Drosophila intracellular gradients establish the pattern of segmentation by controlling gene expression during a critical syncytial stage, prior to cellularization. To investigate whether a similar mechanism may be exploited by other insects, we examined the timing of cellularization with respect to blastoderm formation in an insect with extreme short-germ development, the African desert locust, Schistocerca gregaria. Using light and electron microscopic techniques, we show that the islands of cytoplasm surrounding cleavage nuclei are largely isolated from their neighbours, allowing cleavage to proceed asynchronously. Within a short time of their arrival at the surface and prior to blastoderm formation, nuclei become surrounded by complete cell membranes that block the free uptake of dye (10,000 kDa) from the yolk. Our results imply that the formation of the blastoderm disc involves the aggregation of cells at the posterior pole of the egg and not the migration of nuclei within a syncytial cytoplasm. These findings suggest that the primary cleavage syncytium does not play the same role in patterning the locust embryo as it does in Drosophila. However, we do identify a syncytial nuclear layer that underlies the forming blastoderm and remains in continuity with the yolk.


Asunto(s)
Saltamontes/embriología , Animales , Blastodermo/citología , Núcleo Celular/ultraestructura , Fase de Segmentación del Huevo/citología , Morfogénesis
19.
Proc Natl Acad Sci U S A ; 93(23): 13024-9, 1996 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-8917538

RESUMEN

The conserved organization of the Hox genes throughout the animal kingdom has become one of the major paradigms of evolutionary developmental biology. We have examined the organization of the Hox genes of the grasshopper, Schistocerca gregaria. We find that the grasshopper Hox cluster is over 700 kb long, and is not split into equivalents of the Antennapedia complex and the bithorax complex of Drosophila melanogaster. SgDax and probably also Sgzen, the grasshopper homologues of fushi-tarazu (ftz) and Zerknüllt (zen), respectively, are also in the cluster, showing that the non-homeotic Antp-class genes, "accessory genes," are an ancient feature of insect Hox clusters.


Asunto(s)
Proteínas de Drosophila , Genes Homeobox , Genes de Insecto , Saltamontes/genética , Familia de Multigenes , Animales , Southern Blotting , Drosophila melanogaster/clasificación , Drosophila melanogaster/genética , Factores de Transcripción Fushi Tarazu , Saltamontes/clasificación , Proteínas de Homeodominio/genética , Hibridación Fluorescente in Situ , Proteínas Represoras/genética , Mapeo Restrictivo
20.
Proc Natl Acad Sci U S A ; 93(16): 8479-84, 1996 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-8710895

RESUMEN

We have cloned, from a beetle and a locust, genes that are homologous to the class 3 Hox genes of vertebrates. Outside the homeobox they share sequence motifs with the Drosophila zerknüllt (zen) and z2 genes, and like zen, are expressed only in extraembryonic membranes. We conclude that the zen genes of Drosophila derive from a Hox class 3 sequence that formed part of the common ancestral Hox cluster, but that in insects this (Hox) gene has lost its role in patterning the anterio-posterior axis of the embryo, and acquired a new function. In the lineage leading to Drosophila, the zen genes have diverged particularly rapidly.


Asunto(s)
Evolución Biológica , Escarabajos/genética , Proteínas de Drosophila , Genes Homeobox , Genes de Insecto , Saltamontes/genética , Proteínas de Homeodominio , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Escarabajos/embriología , Regulación del Desarrollo de la Expresión Génica , Saltamontes/embriología , Hibridación in Situ , Datos de Secuencia Molecular , Morfogénesis , ARN Mensajero/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...