Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AoB Plants ; 12(1): plz080, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32002176

RESUMEN

To study the genetic structure of clonal plant populations, genotyping and genet detection using genetic markers are necessary to assign ramets to corresponding genets. Assignment is difficult as it involves setting a robust threshold of genetic distance for genet distinction as neighbouring genets in a plant population are often genetically related. Here, we used restriction site-associated DNA sequencing (RAD-seq) for a rhizomatous clonal herb, Cardamine leucantha [Brassicaceae] to accurately determine genet structure in a natural population. We determined a draft genome sequence of this species for the first time, which resulted in 66 617 scaffolds with N50 = 6086 bp and an estimated genome size of approximately 253 Mbp. Using genetic distances based on the RAD-seq analysis, we successfully distinguished ramets that belonged to distinct genets even from a half-sib family. We applied these methods to 372 samples of C. leucantha collected at 1-m interval grids within a 20 × 20 m plot in a natural population in Hokkaido, Japan. From these samples, we identified 61 genets with high inequality in terms of genet size and patchy distribution. Spatial autocorrelation analyses indicated significant aggregation within 7 and 4 m at ramet and genet levels, respectively. An analysis of parallel DNA microsatellite loci (simple sequence repeats) suggested that RAD-seq can provide data that allows robust genet assignment. It remains unclear whether the large genets identified here became dominant stochastically or deterministically. Precise identification of genets will assist further study and characterization of dominant genets.

2.
PLoS Biol ; 17(11): e3000476, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31721761

RESUMEN

Learning of most motor skills is constrained in a species-specific manner. However, the proximate mechanisms underlying species-specific learned behaviors remain poorly understood. Songbirds acquire species-specific songs through learning, which is hypothesized to depend on species-specific patterns of gene expression in functionally specialized brain regions for vocal learning and production, called song nuclei. Here, we leveraged two closely related songbird species, zebra finch, owl finch, and their interspecific first-generation (F1) hybrids, to relate transcriptional regulatory divergence between species with the production of species-specific songs. We quantified genome-wide gene expression in both species and compared this with allele-specific expression in F1 hybrids to identify genes whose expression in song nuclei is regulated by species divergence in either cis- or trans-regulation. We found that divergence in transcriptional regulation altered the expression of approximately 10% of total transcribed genes and was linked to differential gene expression between the two species. Furthermore, trans-regulatory changes were more prevalent than cis-regulatory and were associated with synaptic formation and transmission in song nucleus RA, the avian analog of the mammalian laryngeal motor cortex. We identified brain-derived neurotrophic factor (BDNF) as an upstream mediator of trans-regulated genes in RA, with a significant correlation between individual variation in BDNF expression level and species-specific song phenotypes in F1 hybrids. This was supported by the fact that the pharmacological overactivation of BDNF receptors altered the expression of its trans-regulated genes in the RA, thus disrupting the learned song structures of adult zebra finch songs at the acoustic and sequence levels. These results demonstrate functional neurogenetic associations between divergence in region-specific transcriptional regulation and species-specific learned behaviors.


Asunto(s)
Pinzones/genética , Factores de Transcripción/fisiología , Vocalización Animal/fisiología , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Pinzones/fisiología , Regulación de la Expresión Génica/genética , Variación Genética/genética , Aprendizaje/fisiología , Neuronas/metabolismo , Pájaros Cantores/genética , Pájaros Cantores/fisiología , Especificidad de la Especie , Factores de Transcripción/genética , Transcriptoma
3.
Mol Ecol Resour ; 17(5): 1025-1036, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27671113

RESUMEN

The self-incompatible species Arabidopsis halleri is a close relative of the self-compatible model plant Arabidopsis thaliana. The broad European and Asian distribution and heavy metal hyperaccumulation ability make A. halleri a useful model for ecological genomics studies. We used long-insert mate-pair libraries to improve the genome assembly of the A. halleri ssp. gemmifera Tada mine genotype (W302) collected from a site with high contamination by heavy metals in Japan. After five rounds of forced selfing, heterozygosity was reduced to 0.04%, which facilitated subsequent genome assembly. Our assembly now covers 196 Mb or 78% of the estimated genome size and achieved scaffold N50 length of 712 kb. To validate assembly and annotation, we used synteny of A. halleri Tada mine with a previously published high-quality reference assembly of a closely related species, Arabidopsis lyrata. Further validation of the assembly quality comes from synteny and phylogenetic analysis of the HEAVY METAL ATPASE4 (HMA4) and METAL TOLERANCE PROTEIN1 (MTP1) regions using published sequences from European A. halleri for comparison. Three tandemly duplicated copies of HMA4, key gene involved in cadmium and zinc hyperaccumulation, were assembled on a single scaffold. The assembly will enhance the genomewide studies of A. halleri as well as the allopolyploid Arabidopsis kamchatica derived from A. lyrata and A. halleri.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Adenosina Trifosfatasas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Contaminación Ambiental , Japón , Metales Pesados , Filogenia , Homología de Secuencia , Sintenía
4.
Nucleic Acids Res ; 42(6): e46, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24423873

RESUMEN

Genome duplication with hybridization, or allopolyploidization, occurs commonly in plants, and is considered to be a strong force for generating new species. However, genome-wide quantification of homeolog expression ratios was technically hindered because of the high homology between homeologous gene pairs. To quantify the homeolog expression ratio using RNA-seq obtained from polyploids, a new method named HomeoRoq was developed, in which the genomic origin of sequencing reads was estimated using mismatches between the read and each parental genome. To verify this method, we first assembled the two diploid parental genomes of Arabidopsis halleri subsp. gemmifera and Arabidopsis lyrata subsp. petraea (Arabidopsis petraea subsp. umbrosa), then generated a synthetic allotetraploid, mimicking the natural allopolyploid Arabidopsis kamchatica. The quantified ratios corresponded well to those obtained by Pyrosequencing. We found that the ratios of homeologs before and after cold stress treatment were highly correlated (r = 0.870). This highlights the presence of nonstochastic polyploid gene regulation despite previous research identifying stochastic variation in expression. Moreover, our new statistical test incorporating overdispersion identified 226 homeologs (1.11% of 20 369 expressed homeologs) with significant ratio changes, many of which were related to stress responses. HomeoRoq would contribute to the study of the genes responsible for polyploid-specific environmental responses.


Asunto(s)
Arabidopsis/genética , Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Poliploidía , Análisis de Secuencia de ARN/métodos , Genoma de Planta , Genómica/métodos
5.
Biophys J ; 102(2): 221-30, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22339858

RESUMEN

Multiphysics modeling, which integrates the models studied in different disciplines so far, is an indispensable approach toward a comprehensive understanding of biological systems composed of diverse phenomena. However, the variety of the models is narrower than the actual diverse phenomena because of the difficulty in coupling independent models separately studied in different disciplines for the actual coupled phenomena. In this study, we develop a mathematical model coupling an enzymatic reaction and mineralization formation. As a test case, we selected an in vitro transcription system where a transcription reaction occurs along with the precipitation formation of magnesium pyrophosphate (Mg(2)PPi). To begin, we experimentally elucidated how the transcription reaction and the precipitation formation are coupled. In the analysis, we applied a Michaelis-Menten-type equation to the transcription reaction and a semiempirical equation describing the correlation between the induction period and the supersaturation ratio to the precipitation formation, respectively. Based on the experimental results, we then integrated these two models. These models were connected by supersaturation that increases as the transcription reaction proceeds and becomes the driving force of the precipitation. We believe that our modeling approach could significantly contribute to the development of newer multiphysics models in systems biology such as bone metabolic networks.


Asunto(s)
Fenómenos Biofísicos , Precipitación Química , Modelos Biológicos , Transcripción Genética , Huesos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Magnesio/química , Magnesio/metabolismo , Minerales/metabolismo , ARN/biosíntesis , ARN/genética , ARN/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(44): 17969-73, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22025684

RESUMEN

Phenotypic diversification of cells is crucial for developmental and regenerative processes in multicellular organisms. The diversification concept is described as the motion of marbles rolling down Waddington's landscape, in which the number of stable states changes as development proceeds. In contrast to this simple concept, the complexity of natural biomolecular processes prevents comprehension of their design principles. We have constructed, in Escherichia coli, a synthetic circuit with just four genes, which programs cells to autonomously diversify as the motion on the landscape through cell-cell communication. The circuit design was based on the combination of a bistable toggle switch with an intercellular signaling system. The cells with the circuit diversified into two distinct cell states, "high" and "low," in vivo and in silico, when all of the cells started from the low state. The synthetic diversification was affected by not only the shape of the landscape determined by the circuit design, which includes the synthesis rate of the signaling molecule, but also the number of cells in the experiments. This cell-number dependency is reminiscent of the "community effect": The fates of developing cells are determined by their number. Our synthetic circuit could be a model system for studying diversification and differentiation in higher organisms. Prospectively, further integrations of our circuit with different cellular functions will provide unique tools for directing cell fates on the population level in tissue engineering.


Asunto(s)
Transducción de Señal , Comunicación Celular , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...