Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 60(5): 1250-5, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18956418

RESUMEN

Large and spatially-linear phase errors along the frequency-encode direction may be induced by several common and hard-to-avoid system imperfections such as eddy currents. For data acquired in dual-echo Dixon techniques, the linear phase error can be more aggravated when compared to that acquired in a single echo and can pose challenges to a phase-correction algorithm necessary for successful Dixon processing. In this work, we propose a two-step process that first corrects the linear component of the phase errors with a modified Ahn-Cho algorithm (Ahn CB and Cho ZH, IEEE Trans. Med. Imaging 6:32, 1987) and then corrects the residual phase errors with a previously-developed region-growing algorithm (Ma J, Magn. Res. Med. 52:415, 2004). We demonstrate that successive application of the two-step process to data from a dual-echo Dixon technique provides a "1-2 punch" to the overall phase errors and can overcome local water and fat separation failures that are observed when the region-growing-based algorithm is applied alone.


Asunto(s)
Tejido Adiposo/anatomía & histología , Tejido Adiposo/metabolismo , Agua Corporal/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Técnica de Sustracción , Artefactos , Simulación por Computador , Modelos Lineales , Espectroscopía de Resonancia Magnética
2.
Magn Reson Med ; 54(5): 1172-84, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16193468

RESUMEN

A novel technique called "k-t GRAPPA" is introduced for the acceleration of dynamic magnetic resonance imaging. Dynamic magnetic resonance images have significant signal correlations in k-space and time dimension. Hence, it is feasible to acquire only a reduced amount of data and recover the missing portion afterward. Generalized autocalibrating partially parallel acquisitions (GRAPPA), as an important parallel imaging technique, linearly interpolates the missing data in k-space. In this work, it is shown that the idea of GRAPPA can also be applied in k-t space to take advantage of the correlations and interpolate the missing data in k-t space. For this method, no training data, filters, additional parameters, or sensitivity maps are necessary, and it is applicable for either single or multiple receiver coils. The signal correlation is locally derived from the acquired data. In this work, the k-t GRAPPA technique is compared with our implementation of GRAPPA, TGRAPPA, and sliding window reconstructions, as described in Methods. The experimental results manifest that k-t GRAPPA generates high spatial resolution reconstruction without significant loss of temporal resolution when the reduction factor is as high as 4. When the reduction factor becomes higher, there might be a noticeable loss of temporal resolution since k-t GRAPPA uses temporal interpolation. Images reconstructed using k-t GRAPPA have less residue/folding artifacts than those reconstructed by sliding window, much less noise than those reconstructed by GRAPPA, and wider temporal bandwidth than those reconstructed by GRAPPA with residual k-space. k-t GRAPPA is applicable to a wide range of dynamic imaging applications and is not limited to imaging parts with quasi-periodic motion. Since only local information is used for reconstruction, k-t GRAPPA is also preferred for applications requiring real time reconstruction, such as monitoring interventional MRI.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Magn Reson Med ; 53(2): 388-97, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15678539

RESUMEN

Inpainting is an image interpolation method. Partial differential equation (PDE)-based digital inpainting techniques are finding broad applications. In this paper, PDE-based inpainting techniques are applied to the field of MR parallel imaging. A novel model and its corresponding numerical method are introduced. This model is then applied to sensitivity maps. Coil sensitivity maps are important for parallel imaging, and they often require extrapolation and hole filling (holes being dark regions of low signal in MR images). These problems can be solved simultaneously by the application of inpainting techniques. Experiments for determining coil sensitivity maps for phantoms and cardiac MR images demonstrate the accuracy of the proposed model. Images generated using sensitivity encoding (SENSE) that utilizes inpainted sensitivity maps, thin-plate spline (TPS) estimated sensitivity maps, and Gaussian kernel smoothed (GKS) sensitivity maps are compared. From the experimental results, it can be seen that inpainted sensitivity maps produce better results than GKS sensitivity maps. The TPS method generates results similar to those of the inpainting technique but is much more time-consuming.


Asunto(s)
Algoritmos , Corazón/anatomía & histología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interfaz Usuario-Computador , Inteligencia Artificial , Gráficos por Computador , Simulación por Computador , Humanos , Modelos Biológicos , Modelos Estadísticos , Análisis Numérico Asistido por Computador , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 1348-51, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-17282446

RESUMEN

In magnetic resonance imaging, multi-channel phased array coils enjoy a high signal to noise ratio (SNR) and better parallel imaging performance. But with the increase in number of channels, the reconstruction time and requirement for computer memory become inevitable problems. In this work, principle component analysis is applied to reduce the size of data and protect the performance of parallel imaging. Clinical data collected using a 32-channel cardiac coil are used in the experiments. Experimental results show that the proposed method dramatically reduces the processing time without much damage to the reconstructed image.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...