Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformation ; 20(3): 212-216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711997

RESUMEN

The relationship between glycated hemoglobin (HbA1c) and an atherogenic lipid profile which is associated with a higher risk of cardiovascular disease is of interest. A retrospective cross-sectional study was conducted on 83 participants aged between 14 and 77 years. Their venous blood was drawn to determine the HbA1c and fasting lipid profile including total cholesterol triglycerides and high-density lipoprotein cholesterol (HDL-C) low-density lipoprotein cholesterol (LDL-C) non-HDL cholesterol and the LDL/HDL ratio were also calculated. The correlations between HbA1c levels and these lipid profile parameters were analyzed. The study showed a significant correlation between HbA1c and LDL-C non-HDL-C and the LDL/HDL ratio. Although there was no significant difference in total cholesterol levels among all groups the levels of total cholesterol and HbA1c were positively correlated. HDL-C exhibited direct correlations with HbA1c there was no correlation between HbA1c and clinical characteristics except for age. Data shows that HbA1c can be used as a predictor of dyslipidemia in diabetic patients there is a significant correlation between HbA1c and an atherogenic lipid profile which highlights the importance of glycemic control in reducing the risk of cardiovascular disease.

2.
IUBMB Life ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38440959

RESUMEN

Nanotechnology is considered a successful approach for cancer diagnosis and treatment. Preferentially, cancer cell recognition and drug targeting via nano-delivery system include the penetration of anticancer agents into the cell membrane to damage the cancer cell by protein modification, DNA oxidation, or mitochondrial dysfunction. The past research on nano-delivery systems and their target has proven the beneficial achievement in a malignant tumor. Modern perceptions using inventive nanomaterials for cancer management have been offered by a multifunctional platform based on various nano-carriers with the probability of imaging and cancer therapy simultaneously. Emerging nano-delivery systems in cancer therapy still lack knowledge of the biological functions behind the interaction between nanoparticles and cancer cells. Since the potential of engineered nanoparticles addresses the various challenges, limiting the success of cancer therapy subsequently, it is a must to review the molecular targeting of a nano-delivery system to enhance the therapeutic efficacy of cancer. This review focuses on using a nano-delivery system, an imaging system, and encapsulated nanoparticles for cancer therapy.

3.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280562

RESUMEN

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Hemoglobina Glucada , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/epidemiología , Estudios Transversales , Vitamina D/uso terapéutico , Vitaminas , Suplementos Dietéticos , Estudios Observacionales como Asunto
4.
Anal Biochem ; 685: 115393, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977213

RESUMEN

The process of glycation, characterized by the non-enzymatic reaction between sugars and free amino groups on biomolecules, is a key contributor to the development and progression of both microvascular and macrovascular complications associated with diabetes, particularly due to persistent hyperglycemia. This glycation process gives rise to advanced glycation end products (AGEs), which play a central role in the pathophysiology of diabetes complications, including nephropathy. The d-ribose-mediated glycation of fibrinogen plays a central role in the pathogenesis of diabetes nephropathy (DN) and retinopathy (DR) by the generation and accumulation of advanced glycation end products (AGEs). Glycated fibrinogen with d-ribose (Rb-gly-Fb) induces structural changes that trigger an autoimmune response by generating and exposing neoepitopes on fibrinogen molecules. The present research is designed to investigate the prevalence of autoantibodies against Rb-gly-Fb in individuals with type 2 diabetes mellitus (T2DM), DN & DR. Direct binding ELISA was used to test the binding affinity of autoantibodies from patients' sera against Rb-gly-Fb and competitive ELISA was used to confirm the direct binding findings by checking the bindings of isolated IgG against Rb-gly-Fb and its native conformer. In comparison to healthy subjects, 32% of T2DM, 67% of DN and 57.85% of DR patients' samples demonstrated a strong binding affinity towards Rb-gly-Fb. Both native and Rb-gly-Fb binding by healthy subjects (HS) sera were non-significant (p > 0.05). Furthermore, the early, intermediate, and end products of glycation have been assessed through biochemical and physicochemical analysis. The biochemical markers in the patient groups were also significant (p < 0.05) in comparison to the HS group. This study not only establishes the prevalence of autoantibodies against d-ribose glycated fibrinogen in DN but also highlights the potential of glycated fibrinogen as a biomarker for the detection of DN and/or DR. These insights may open new avenues for research into novel therapeutic strategies and the prevention of diabetes-related nephropathy and retinopathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Enfermedades de la Retina , Humanos , Nefropatías Diabéticas/complicaciones , Autoanticuerpos , Ribosa , Productos Finales de Glicación Avanzada/metabolismo , Fibrinógeno , Enfermedades de la Retina/complicaciones
5.
Life (Basel) ; 13(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37895368

RESUMEN

Methylglyoxal (MG) is a precursor for advanced glycation end-products (AGEs), which have a significant role in diabetes. The present study is designed to probe the immunological response of native and glycated low-density lipoprotein (LDL) in experimental animals. The second part of this study is to probe glycoxidative lesion detection in low-density lipoproteins (LDL) in diabetes subjects with varying disease duration. The neo-epitopes attributed to glycation-induced glycoxidative lesion of LDL in DM patients' plasma were, analyzed by binding of native and MG-modified LDL immunized animal sera antibodies using an immunochemical assay. The plasma purified human LDL glycation with MG, which instigated modification in LDL. Further, the NewZealand-White rabbits were infused with unmodified natural LDL (N-LDL) and MG-glycatedLDL to probe its immunogenicity. The glycoxidative lesion detection in LDL of DM with disease duration (D.D.) of 5-15 years and D.D. > 15 years was found to be significantly higher as compared to normal healthy subjects (NHS) LDL. The findings support the notion that prolonged duration of diabetes can cause structural alteration in LDL protein molecules, rendering them highly immunogenic in nature. The presence of LDL lesions specific to MG-associated glycoxidation would further help in assessing the progression of diabetes mellitus.

6.
Saudi J Biol Sci ; 30(10): 103782, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37692889

RESUMEN

This pioneering study aims to address the paradox of the highly regarded Kinnow mandarin fruit, whose valuable peels have been considered undesired remnants from industrial fruit juice production. The study proposes the utilization of these discarded peels to synthesize ecologically safe gold nanoparticles (K-AuNPs) through a one-pot method. The objectives of this research are to synthesize K-AuNPs using an ecologically safe single-step approach, utilizing discarded Kinnow mandarin fruit peels, and to assess their antibacterial and antidiabetic potential. The validation of K-AuNPs involved various techniques including UV-visible spectroscopy, TEM, DLS, and zeta-potential investigations. The antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis was compared to levofloxacin and Kinnow mandarin aqueous peel extract (KAPE). Furthermore, the anti-diabetic efficacy was evaluated through α-amylase and α-glucosidase experiments, comparing K-AuNPs to pure KAPE and the standard inhibitor acarbose. The results confirmed the successful synthesis of K-AuNPs from KAPE, as evidenced by UV-spectral profiles (527 nm), TEM micrographs (∼21 d. nm), dynamic light scattering (65 d.nm), and zeta-potential (-12 mV). The K-AuNPs demonstrated a superior zone of inhibition and lower MIC values against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis, surpassing levofloxacin and KAPE alone. Additionally, the K-AuNPs exhibited potent anti-diabetic efficacy, outperforming both pure KAPE and acarbose at a lower dosage. To sum up, the process of producing K-AuNPs utilizing Kinnow mandarin peel extracts demonstrates a powerful antibacterial and antidiabetic remedy sourced from previously discarded materials. These findings signify a significant leap forward in the domain of natural product exploration, with the potential to fundamentally reshape modern healthcare approaches.

7.
Glycobiology ; 33(6): 442-453, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-36762911

RESUMEN

Hyperglycemia is a poorly controlled diabetic condition, affects about 70% of people all round the world. In the year 2015, about 41.5 crore people were diabetic and is expected to reach around 64.3 crore by the year 2040. Cardiovascular diseases (CVDs) are considered as one of the major risk factors that cause more than half of the death of diabetic patients and promote related comorbidities. Atherosclerosis and amyloidosis are the prime factors linked with CVDs. Apolipoprotein A-I (ApoA-I) of HDL has protective action against CVDs, participates in reverse cholesterol transport mechanism and lipid metabolism, but gets easily glycated under prolonged hyperglycemic aura, i.e. glycation. ApoA-I has a potent role in maintenance of glucose level, providing a compelling link between diabetes and CVDs. Increased protein glycation in people with diabetes promotes atherosclerosis, which might play possible role in promotion of protein aggregation by altering the protein structure and its conformation. Here, we intend to investigate the mechanistic behavior of ApoA-I under the menace of glycation and its impact on ApoA-I structure and function that possibly link with aggregation or amyloidosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Hiperglucemia , Humanos , Lipoproteínas HDL/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Reacción de Maillard , Aterosclerosis/metabolismo
8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430714

RESUMEN

Diabetes is a long-term metabolic disorder characterized by persistently elevated blood sugar levels. Chronic hyperglycemia enhances glucose-protein interactions, leading to the formation of advanced glycation end products (AGEs), which form irreversible cross-links with a wide variety of macromolecules, and accumulate rapidly in the body tissues. Thus, the objective of this study was to assess the therapeutic properties of C-phycocyanin (C-PC) obtained from Plectonema species against oxidative stress, glycation, and type 2 diabetes mellitus (T2DM) in a streptozotocin (STZ)-induced diabetic Wistar rat. Forty-five days of C-PC administration decreased levels of triglycerides (TGs), blood glucose, glycosylated hemoglobin, (HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), liver and kidney function indices, and raised body weight in diabetic rats. C-PC suppressed biochemical glycation markers, as well as serum carboxymethyllysine (CML) and fluorescent AGEs. Additionally, C-PC maintained the redox state by lowering lipid peroxidation and protein-bound carbonyl content (CC), enhancing the activity of high-density lipoprotein cholesterol (HDL-C) and renal antioxidant enzymes, and preserving retinal and renal histopathological characteristics. Thus, we infer that C-PC possesses antidiabetic and antiglycation effects in diabetic rats. C-PC may also act as an antidiabetic and antiglycation agent in vivo that may reduce the risk of secondary diabetic complications.


Asunto(s)
Productos Biológicos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Ratas , Animales , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Ficocianina/farmacología , Ficocianina/uso terapéutico , Productos Biológicos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas Wistar , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hiperglucemia/tratamiento farmacológico , HDL-Colesterol
9.
Chem Biol Interact ; 367: 110147, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108717

RESUMEN

A nonenzymatic reaction between reducing sugars and amino groups of proteins results in the formation of advanced glycation end products, which are linked to a number of chronic progressive diseases with macro- and microvascular complications. In this research, we sought to ascertain the immunological response to d-ibose-glycated fibrinogen. New Zealand White female rabbits were immunized with native and d-ribose-glycated (Rb-gly-Fb) fibrinogen and used for studying the immunological response. Serum from these rabbits analyzed using direct binding and competitive inhibition ELISA was found to contain a high titer of antibodies against Rb-gly-Fb; Rb-gly-Fb was much more immunogenic than its native form. The IgG against Rb-gly-Fb (Rb-gly-Fb-IgG) was highly specific against the immunogenic protein. Moreover, histopathology and immunofluorescence studies revealed the deposition of the Rb-gly-Fb-IgG immune complex in the glomerular basement membrane of the kidneys of immunized rabbits. Furthermore, immunization with Rb-gly-Fb increased the expression of genes encoding proinflammatory cytokines, tumour necrosis factor α, interleukin-6, interleukin-1ß, and interferon-gamma, which is indicative of increased inflammation and the antigenic role of Rb-gly-Fb in provoking an immune response.


Asunto(s)
Productos Finales de Glicación Avanzada , Ribosa , Inmunidad Adaptativa , Animales , Complejo Antígeno-Anticuerpo , Femenino , Fibrinógeno , Productos Finales de Glicación Avanzada/metabolismo , Inmunoglobulina G , Interferón gamma , Interleucina-1beta , Interleucina-6 , Conejos , Ribosa/metabolismo , Factor de Necrosis Tumoral alfa
10.
Int J Biol Macromol ; 205: 283-296, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35192903

RESUMEN

Glycation of proteins results in structural alteration, functional deprivation, and generation of advanced glycation end products (AGEs). Reactive oxygen species (ROS) that are generated during in vivo autoxidation of glucose induces glycoxidation of intermediate glycation-adducts, which in turn give rise to aldehyde and/or ketone groups containing dicarbonyls or reactive carbonyl species (RCS). RCS further reacts non-enzymatically and starts the glycation-oxidation vicious cycle, thus exacerbating oxidative, carbonyl, and glycative stress in the physiological system. Glyoxal (GO), a reactive dicarbonyl that generates during glycoxidation and lipid peroxidation, contributes to glycation. This in vitro physicochemical characterization study focuses on GO-induced glycoxidative damage suffered by immunoglobulin G (IgG) and fibrinogen proteins. The structural alterations were analyzed by UV-vis, fluorescence, circular dichroism, and Fourier transform infrared (FT-IR) spectroscopy. Ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), free lysine, free arginine, carboxymethyllysine (CML), and protein aggregation were also quantified. Structural perturbations, increased concentration of ketoamines, protein carbonyls, HMF, and malondialdehyde (MDA) were reported in glycated proteins. The experiment results also validate increased oxidative stress and AGEs formation i.e. IgG-AGEs and Fib-AGEs. Thus, we can conclude that AGEs formation during GO-mediated glycation of IgG and fibrinogen could hamper normal physiology and might play a significant role in the pathogenesis of diabetes-associated secondary complications.


Asunto(s)
Productos Finales de Glicación Avanzada , Glioxal , Fibrinógeno/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Inmunoglobulina G/química , Espectroscopía Infrarroja por Transformada de Fourier
11.
Biomed Res Int ; 2022: 5583298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35097119

RESUMEN

Hundreds of millions of people around the globe are afflicted by diabetes mellitus. The alteration in glucose fixation process might result into hyperglycaemia and could affect the circulating plasma proteins to undergo nonenzymatic glycation reaction. If it is unchecked, it may lead to diabetes with increase in advanced glycation end products (AGEs). Therefore, the present study was designed to inhibit the diabetes and glycation by using natural antioxidant "ellagic acid" (EA). In this study, we explored the antidiabetes and antiglycation potential of EA in both in vitro (EA at micromolar concentration) and in vivo systems. The EA concentrations of 10 and 20 mg kg-1B.W./day were administered orally for 25 days to alloxan-induced diabetic rats, a week after confirmation of stable diabetes in animals. Intriguingly, EA supplementation in diabetic rats reversed the increase in fasting blood sugar (FBS) and hemoglobin A1c (HbA1c) level. EA also showed an inhibitory role against glycation intermediates including dicarbonyls, as well as AGEs, investigated in a glycation mixture with in vitro and in vivo animal plasma samples. Additionally, EA treatment resulted in inhibition of lipid peroxidation-mediated malondialdehyde (MDA) and conjugated dienes (CD). Furthermore, EA exhibited an antioxidant property, increased the level of plasma glutathione (GSH), and also helped to decrease histological changes evaluated by histoimmunostaining of animal kidney tissues. The results from our investigation clearly indicates the antiglycative property of EA, suggesting EA as an adequate inhibitor of glycation and diabetes, which can be investigated further in preclinical settings for the treatment and management of diabetes-associated complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Experimental , Animales , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ácido Elágico/farmacología , Glutatión/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...