Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Integr Neurosci ; 18: 1321872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440417

RESUMEN

Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.

2.
PLoS Comput Biol ; 19(3): e1010690, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996232

RESUMEN

We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.


Asunto(s)
Neoplasias Pulmonares , Lisina , Humanos , Fosforilación , Lisina/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Neoplasias Pulmonares/metabolismo , Ubiquitinación , Transducción de Señal
3.
Artículo en Inglés | MEDLINE | ID: mdl-35865106

RESUMEN

Blockchain is an emerging technology that has enabled many applications, from cryptocurrencies to digital asset management and supply chains. Due to this surge of popularity, analyzing the data stored on blockchains poses a new critical challenge in data science. To assist data scientists in various analytic tasks for a blockchain, in this tutorial, we provide a systematic and comprehensive overview of the fundamental elements of blockchain network models. We discuss how we can abstract blockchain data as various types of networks and further use such associated network abstractions to reap important insights on blockchains' structure, organization, and functionality. This article is categorized under:Technologies > Data PreprocessingApplication Areas > Business and IndustryFundamental Concepts of Data and Knowledge > Data ConceptsFundamental Concepts of Data and Knowledge > Knowledge Representation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...