Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Materials (Basel) ; 17(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473535

RESUMEN

A Pb-free FASnI3 perovskite solar cell improved by using Cu2O/ZnO as two-dimensional-based hole/electron transport nanolayers has been proposed and studied by using a SCAPS-1D solar simulator. To calibrate our study, at first, an FTO/ZnO/MAPbI3/Cu2O/Au multilayer device was simulated, and the numerical results (including a conversion efficiency of 6.06%, an open circuit potential of 0.76 V, a fill factor parameter of 64.91%, and a short circuit electric current density of 12.26 mA/cm2) were compared with the experimental results in the literature. Then, the conversion efficiency of the proposed FASnI3-based solar cell was found to improve to 7.83%. The depth profile energy levels, charge carrier concentrations, recombination rate of electron/hole pair, and the FASnI3 thickness-dependent solar cell efficiency were studied and compared with the results obtained for the MAPbI3-containing device (as a benchmark). Interestingly, the FASnI3 material required to obtain an optimized solar cell is one-half of the material required for an optimized MAPbI3-based device, with a thickness of 200 nm. These results indicate that developing more environmentally friendly perovskite solar cells is possible if suitable electron/hole transport layers are selected along with the upcoming Pb-free perovskite absorber layers.

2.
Environ Sci Pollut Res Int ; 30(56): 118754-118763, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917266

RESUMEN

Recently, due to the superior stability and lower risk of toxicity, the development of Pb-free halide double perovskite materials has revived excellent interest. In this work, Pb-free perovskite solar cells (PSCs) with ITO/ETL/Cs2AgBiBr6/Cu2O/Au multilayer structures with Cs2AgBiBr6 double perovskite as the solar light absorber layer, some electron transport layers (ETLs) and Cu2O as a hole transport layer have been introduced. Then, the effects of various thicknesses of the absorber layer and also ETL materials, like ZnO, C60, CdS, SnO2, phenyl-C61-butyric acid methyl ester (PCBM), and TiO2, on the device performance (including photoelectronic conversion efficiency (PCE), fill factor (FF%), short circuit current density (Jsc), and open-circuit voltage (VOC)) were examined with the help of a solar cell simulator (SCAPS-1D). It is noteworthy that, in the case of all ETL materials, the optimal thickness of the absorber layer was determined to be 400 nm. Then, the maximum PCE values of 20.08%, 17.63%, 14.07%, 12.11%, 14.94%, and 18.83% were obtained for the solar cells containing ZnO, C60, CdS, SnO2, PCBM, and TiO2 as the ETL, respectively. These results show that designing/developing Pb-free halide double perovskite devices having comparable PCEs with the Pb-based PSCs is feasible, provided that proper/compatible materials will be used in the multilayer structure of the next generations of solar cells.


Asunto(s)
Óxido de Zinc , Transporte de Electrón , Compuestos de Calcio , Ésteres
3.
Environ Res ; 239(Pt 2): 117448, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858692

RESUMEN

Wound healing is a complex process that often requires intervention to accelerate tissue regeneration and prevent complications. The goal of this research was to assess the potential of bioactive chitosan@poly (ethylene oxide)@CuFe2O4 (CS@PEO@CF) nanofibers for wound healing applications by evaluating their morphology, mechanical properties, and magnetic behavior. Additionally, in vitro and in vivo studies were conducted to investigate their effectiveness in promoting wound healing treatment. The nanoparticles exhibited remarkable antibacterial and antioxidant properties. In the nanofibrous mats, the optimal concentration of CuFe2O4 was determined to be 0.1% Wt/V. Importantly, this concentration did not adversely affect the viability of fibroblast cells, which also identified the ideal concentration. The scaffold's hemocompatibility revealed nonhemolytic properties. Additionally, a wound-healing experiment demonstrated significant migration and growth of fibroblast cells at the edge of the wound. These nanofibrous mats are applied to treat rats with full-thickness excisional wounds. Histopathological analysis of these wounds showed enhanced wound healing ability, as well as regeneration of sebaceous glands and hair follicles within the skin. Overall, the developed wound dressing comprises CuFe2O4 nanoparticles incorporated into CS/PEO nanofibrous mats demonstrating its potential for successful application in wound treatment.


Asunto(s)
Quitosano , Nanofibras , Ratas , Animales , Quitosano/farmacología , Óxido de Etileno , Cicatrización de Heridas , Antibacterianos/farmacología
4.
Environ Res ; 231(Pt 2): 116133, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209981

RESUMEN

Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.


Asunto(s)
Metales Pesados , Nanoestructuras , Purificación del Agua , Tecnología , Purificación del Agua/métodos , Sustancias Peligrosas
5.
Environ Sci Pollut Res Int ; 30(19): 57032-57040, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36930321

RESUMEN

The lead is a heavy metal with hazardous impacts on environment and human life. Lead-free perovskite solar cells have attracted much attention in recent years, due to eco-friendly characteristics. Meanwhile, Pb-containing cells showed the highest efficiencies among the various types of cells. Hence, designing novel Pb-free solar cells with comparable or better performance than the Pb-containing ones is highly required. In this work, a lead-free methyl-ammonium-germanium-iodide (MAGeI3)-based perovskite solar cell with ITO/TiO2/MAGeI3/Spiro-OMeTAD/Ag multilayer nanostructure has been proposed and its main characteristics including open-circuit voltage (VOC) and power conversion efficiency (η) have been evaluated and compared with those of MAPbI3-based cell, in simulation study. The VOC and η of the MAGeI3-based cell (1.18 V and 11.9%) have been found comparable with those of the MAPbI3 one (1.10 V and 14.6%). These results can excite more attention to Ge as a more environment-friendly element than Pb, in highly efficient upcoming perovskite solar cells.


Asunto(s)
Compuestos de Calcio , Nanoestructuras , Humanos , Óxidos
6.
J Opt Soc Am A Opt Image Sci Vis ; 40(1): 21-26, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607071

RESUMEN

We prove the existence of relatively large Goos-Hänchen (GH) shifts for graphene in the presence of an applied strain in different crystallographic directions for p and s polarized beams. It is shown that GH shifts are smoothly increased by stretching the graphene's lattice. Moreover, we investigate the GH effect for strained graphene as a function of Fermi energy, which can be controlled by external factors such as gate voltage. We show that applied strain along zigzag and armchair orientations gives different results for GH shifts, which could provide a proper tool for the detection of strain in graphene.

7.
ACS Appl Mater Interfaces ; 15(3): 3713-3730, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36633466

RESUMEN

Ultrathin MoS2-MoO3-x heterojunction nanosheets with unique features were introduced as biocompatible, non-cytotoxic, and visible light-sensitive stimulator layers for the controlled differentiation of human neural progenitor cells (hNPCs) into nervous lineages. hNPC differentiation was also investigated on reduced graphene oxide (rGO)-containing scaffolds, that is, rGO and rGO/MoS2-MoO3-x nanosheets. In darkness, hNPC differentiation into neurons increased on MoS2-MoO3-x by a factor of 2.7 due to the excellent biophysical cues and further increased on rGO/MoS2-MoO3-x by a factor of 4.4 due to a synergistic effect induced by the rGO. The MoO3-x domains with antioxidant activity and LSPR absorption induced p-type doping in MoS2-MoO3-x. Under photostimulation, the hNPCs on the MoS2-MoO3-x exhibited higher differentiation into glial cells by a factor of 1.4, and the decrease in photo-electron current to hNPCs due to the induction of more p-type doping in the MoS2-MoO3-x. While the increase in neuronal differentiation of hNPCs on rGO/MoS2-MoO3-x by a factor of 1.8 was ascribed to the presence of rGO as an ultrafast electron transferor which quickly transferred photogenerated electrons to hNPCs before their transfer to free radicals, these results demonstrated the promising potential of MoS2-based scaffolds for applying in the controllable repair and/or regeneration of diseases/disorders related to the nervous system.


Asunto(s)
Molibdeno , Células-Madre Neurales , Humanos , Diferenciación Celular
8.
Bioeng Transl Med ; 8(1): e10347, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684103

RESUMEN

A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.

9.
J Colloid Interface Sci ; 637: 237-250, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36701869

RESUMEN

The oxygen-rich organic/inorganic (reduced graphene oxide (rGO)/ZnO2-Ag) nanoframeworks as suppliers of O2 nanobubbles (NBs) with dual pH-and-temperature-sensitive behavior were developed to suppress bacterial growth. It was demonstrated that not only the rate but also the final product of oxygen-rich ZnO2 decomposition (to an intermediate product of H2O2) rate was dramatically controlled by pH adjustment. Furthermore, in the presence of Ag nanoparticles, ̇OH radical generation switched to O2 NBs evolution by shifting the pH from acidic to basic/neutral conditions, demonstrating an adjustable nanozyme function-ability between catalase and peroxidase-like activity, respectively. Antibacterial properties of the in-situ generated O2 NBs substantially enhanced against bacterial models including methicillin-resistant Staphylococcus aureus in the presence of rGO. In fact, deflecting the electrons from their main respiratory chain to an oxygen-rich bypath through rGO significantly stimulated reactive oxygen species (ROS) generation, combating bacteria more efficiently. Moreover, NIR laser irradiation-induced temperature rise (due to the inherent photothermal properties of rGO) facilitated ZnO2 decomposition and accelerated growth and collapse of NBs. The simultaneous microscale thermal and mechanical destructions induced stronger antibacterial behavior. These results hold great promises for designing simple organic/inorganic nanoframeworks as solid sources of NBs with tunable enzyme-like ability in response to environmental conditions suitable for forthcoming graphene-based bio-applications.


Asunto(s)
Grafito , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Óxido de Zinc , Antibacterianos/farmacología , Antibacterianos/química , Catalasa , Grafito/farmacología , Grafito/química , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química , Oxígeno , Plata/química , Óxido de Zinc/farmacología , Peroxidasa/metabolismo
10.
Angew Chem Int Ed Engl ; 62(17): e202217345, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36718001

RESUMEN

Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.


Asunto(s)
Antibacterianos , Nanoestructuras , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
11.
ACS Biomater Sci Eng ; 8(12): 5038-5059, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347501

RESUMEN

Organ-on-a-chip (OOC) systems are engineered nanobiosystems to mimic the physiochemical environment of a specific organ in the body. Among various components of OOC systems, biomimetic membranes have been regarded as one of the most important key components to develop controllable biomimetic bioanalysis systems. Here, we review the preparation and characterization of biomimetic membranes in comparison with the features of the extracellular matrix. After that, we review and discuss the latest applications of engineered biomimetic membranes to fabricate various organs on a chip, such as liver, kidney, intestine, lung, skin, heart, vasculature and blood vessels, brain, and multiorgans with perspectives for further biomedical applications.


Asunto(s)
Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos , Sistemas Microfisiológicos , Biomimética , Membranas
12.
Adv Colloid Interface Sci ; 308: 102771, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36113311

RESUMEN

Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.


Asunto(s)
Nanocompuestos , Ingeniería de Tejidos , Materiales Biocompatibles/química , Fenómenos Magnéticos , Nanocompuestos/química , Nanotecnología , Medicina Regenerativa
13.
Front Chem ; 10: 943003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105306

RESUMEN

In this study, two novel biomimetic modular peptide motifs based on the alpha-2 subunit of type IV collagen (CO4A2) were designed and immobilized on a graphene platform to imitate integrin and heparan sulfate- (HS-) binding proteins. The in silico study was used to design 9-mer K[KGDRGD]AG and 10-mer KK[SGDRGD]AG for testing designed Integrin-Binding Peptide (dIBP) and HS-Binding Peptide (dHBP). The virtual docking technique was used to optimize the peptide motifs and their relevant receptors. Molecular dynamic (MD) simulation was used to evaluate the stability of peptide-receptor complexes. The effect of the platform on the differentiation of human mesenchymal stem cells (hMSCs) to hepatic-like cells (HLCs) was evaluated. After differentiation, some hepatic cells' molecular markers such as albumin, AFP, CK-18, and CK-19 were successfully followed. Graphene-heparan sulfate binding peptide (G-HSBP) enhances the mature hepatic markers' expression instead of control (p ≤ 0.05). The pathological study showed that the designed platform is safe, and no adverse effects were seen till 21 days after implantation.

14.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36002440

RESUMEN

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Computadores , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular
15.
J Control Release ; 350: 175-192, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914615

RESUMEN

Chitosan is a natural polymer with acceptable biocompatibility, biodegradability, and mechanical stability; hence, it has been widely appraised for drug and gene delivery applications. However, there has been no comprehensive assessment to tailor-make chitosan cross-linkers of various types and functionalities as well as complex chitosan-based semi- and full-interpenetrating networks for drug delivery systems (DDSs). Herein, various fabrication methods developed for chitosan hydrogels are deliberated, including chitosan crosslinking with and without diverse cross-linkers. Tripolyphosphate, genipin and multi-functional aldehydes, carboxylic acids, and epoxides are common cross-linkers used in developing biomedical chitosan for DDSs. Methods deployed for modifying the properties and performance of chitosan hydrogels, via their composite production (semi- and full-interpenetrating networks), are also cogitated here. In addition, recent advances in the fabrication of advanced chitosan hydrogels for drug delivery applications such as oral drug delivery, transdermal drug delivery, and cancer therapy are discussed. Lastly, thoughts on what is needed for the chitosan field to continue to grow is also debated in this comprehensive review article.


Asunto(s)
Quitosano , Aldehídos , Ácidos Carboxílicos , Sistemas de Liberación de Medicamentos/métodos , Compuestos Epoxi , Hidrogeles , Polímeros
16.
Chemosphere ; 306: 135578, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35798154

RESUMEN

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.


Asunto(s)
ADN de Cadena Simple , Doxorrubicina , Sistema de Administración de Fármacos con Nanopartículas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Calcio , ADN de Cadena Simple/análisis , Doxorrubicina/administración & dosificación , Células HEK293 , Células HeLa , Humanos , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/genética , Óxido de Zinc
17.
Materials (Basel) ; 15(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35269031

RESUMEN

Several pieces of research have been done on transition metal nanoparticles and their nanocomplexes as research on their physical and chemical properties and their relationship to biological features are of great importance. Among all their biological properties, the antibacterial and antimicrobial are especially important due to their high use for human needs. In this article, we will discuss the different synthesis and modification methods of silver (Ag) and gold (Au) nanoparticles and their physicochemical properties. We will also review some state-of-art studies and find the best relationship between the nanoparticles' physicochemical properties and potential antimicrobial activity. The possible antimicrobial mechanism of these types of nanoparticles will be discussed in-depth as well.

18.
J Hazard Mater ; 423(Pt B): 127130, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34530276

RESUMEN

Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The 1,1,1-tris[[(2'-benzyl-amino-formyl)phenoxy]methyl]ethane (A), 4-amino-benzo-hydrazide (B), and 4-(2-(4-(3-carboxy-propan-amido)benzoyl)hydrazineyl)-4-oxobutanoic acid (B1) were synthesized to obtain green ligands based on 4-X-N-(…(Y(hydrazine-1-carbonyl)phenyl)benzamide, with X denoting fluoro (B2), methoxy (B3), nitro (B4), and phenyl-sulfonyl (B5) substitutes. The chemical structure of ligand-decorated adenosine triphosphate (ATP) molecules (S-ATP) was characterized by FTIR, XRD, AFM, FESEM, and TEM techniques. The cytotoxicity of the porous membrane was patterned by applying different cell lines, including HEK-293, PC12, MCF-7, HeLa, HepG2, and HT-29, to disclose their biological behavior. The morphology of cultured cells was monitored by confocal laser scanning microscopy. The sensitivity of S-ATP to different cations of Na+, Mg2+, K+, Ba2+, Zn2+, and Cd2+ was evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES) in terms of extraction efficiency (η). For pH of 5.5, the η of A-based S-ATP followed the order Na+ (63.3%) > Mg2+ (62.1%) > Ba2+ (7.6%) > Ca2+ (5.5%); while for pH of 7.4, Na+ (37.0%) > Ca2+ (33.1%) > K+ (25.7%). The heat map of MTT and dose-dependent evaluations unveiled acceptable cell viability of more than 90%. The proposed green porous nanomembranes would pave the way to use multifunctional green porous nanomembranes in biological membranes.


Asunto(s)
Benzamidas , Sodio , Cationes , Células HEK293 , Humanos , Porosidad
19.
J Hazard Mater ; 424(Pt A): 127294, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34592595

RESUMEN

Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792-30.0 MPa, varying the temperature (127-327 °C) and time (1-60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5 min) and high temperatures (above 277 °C), about 99% of HMWs were efficaciously converted to clean products by subcritical hydrothermal treatment. The results of hydrothermal extraction after 5 min indicated that at low temperatures (127-227 °C), the total organic carbon in the aqueous phase increased as the residual solid phase decreased, reaching a peak around 220 °C. Acetone soluble extracts or fat phase appeared above 227 °C and reached a maximum yield of 21% at 357 °C. Aspartic acid, threonine, and glycine were the primary amino acids; glycolic acid, formic acid, lactic acid, and acetic acid were obtained as the main organic acids, glucose, fructose, and cellobiose were substantial sugars produced from the aqueous phase after 5 min of hydrothermal subcritical hydrolysis extraction.


Asunto(s)
COVID-19 , Residuos Sanitarios , Purificación del Agua , Medicina de Hierbas , Humanos , Hidrólisis , Pandemias , SARS-CoV-2 , Temperatura
20.
ACS Biomater Sci Eng ; 8(1): 54-81, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34967216

RESUMEN

Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently earned much attention thanks to its special and inspiring physicochemical properties, such as its large surface area, efficient thermal/electrical properties, carbon-based chemical purity with controllable biocompatibility, easy functionalization, capability of single-molecule detection, anticancer characteristics, 3D template feature in tissue engineering, and, in particular, antibacterial/antiviral activities. In this Review, the most important and challenging viruses of our era, such as human immunodeficiency virus, Ebola, SARS-CoV-2, norovirus, and hepatitis virus, and immunogenic disorders, such as asthma, Alzheimer's disease, and Parkinson's disease, in which graphene-based nanomaterials can effectively take part in the prevention, detection, treatment, medication, and health effect issues, have been covered and discussed.


Asunto(s)
COVID-19 , Grafito , Nanoestructuras , Virus , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...