Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592917

RESUMEN

Identifying the contributions of climate factors and fertilization to maize yield is significant for the assessment of climate change impacts on maize production under semiarid conditions. This experiment was conducted with an overall objective to find how N fertilization and cultivar interactions along with climatic conditions determine the mineral composition and maize yield responses of four divergent maize cultivars grown under eight different fertilization levels. The results showed that element contents were significantly affected by year (Y), cultivar (C), N fertilization, and N × C interaction. The element contents of grains were mainly influenced by N rate or N × C interactions. The results showed that maize yield was significantly affected by year (Y), genotype (G), N fertilization (N), and Y × G × N interaction. These results implied that the maize yield was significantly affected by changes in genotypes and environments. Overall, our findings are a result of the interactions of genetic, environmental, and agronomic management factors. Future studies could evaluate more extreme plant densities, N fertilizer levels, and environments to further enhance our understanding of management effects on the mineral composition and maize yield in calcareous soil.

2.
Plants (Basel) ; 12(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37765472

RESUMEN

Mulching and nitrogen (N) fertilization are the main drivers for sustainable crop production. The sole use of nitrogen fertilizer threatened both the physiology and production of maize in rain-fed areas. Therefore, we proposed that wheat straw mulching with N fertilization would increase maize yield by improving soil fertility, physiology, and nitrogen use efficiency. A two-year field study evaluated the effects of CK (control), N (nitrogen application at 172 kg ha-1), HS (half wheat straw mulch, 2500 kg ha-1), HS+N (half wheat straw, 2500 kg ha-1 plus 172 kg N ha-1), FS (full wheat straw, 5000 kg ha-1), and FS+N (full wheat straw, 5000 kg ha-1 plus 172 kg N ha-1) on maize growth, physiology, and biochemistry. Compared with the control, the FS+N treatment resulted in the increase of 56% photosynthetic efficiency, 9.6% nitrogen use efficiency, 60% nitrogen uptake, 80% soluble sugar, 59% starches, 48% biomass, and 29% grain yield of maize. In addition, the FS+N regime increased 47%, 42%, and 106% of soil organic carbon and available P and N content in comparison with the control. Maize grain and biomass yields were positively correlated with N uptake, photosynthesis, soil organic carbon, and soil available N and P contents. Conclusively, the use of wheat straw at 5000 kg ha-1, along with 172 kg N ha-1, is a promising option for building a sustainable wheat-maize cropping system to achieve optimal crop yield and improved plant and soil health in a semi-arid region of China.

3.
Plant Physiol ; 193(2): 1479-1490, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37307568

RESUMEN

The endophytic nitrogen (N)-fixing bacterium A02 belongs to the genus Curtobacterium (Curtobacterium sp.) and is crucial for the N metabolism of cassava ( Manihot esculenta Crantz). We isolated the A02 strain from cassava cultivar SC205 and used the 15N isotope dilution method to study the impacts of A02 on growth and accumulation of N in cassava seedlings. Furthermore, the whole genome was sequenced to determine the N-fixation mechanism of A02. Compared with low N control (T1), inoculation with the A02 strain (T2) showed the highest increase in leaf and root dry weight of cassava seedlings, and 120.3 nmol/(mL·h) was the highest nitrogenase activity recorded in leaves, which were considered the main site for colonization and N-fixation. The genome of A02 was 3,555,568 bp in size and contained a circular chromosome and a plasmid. Comparison with the genomes of other short bacilli revealed that strain A02 showed evolutionary proximity to the endophytic bacterium NS330 (Curtobacterium citreum) isolated from rice (Oryza sativa) in India. The genome of A02 contained 13 nitrogen fixation (nif) genes, including 4 nifB, 1 nifR3, 2 nifH, 1 nifU, 1 nifD, 1 nifK, 1 nifE, 1 nifN, and 1 nifC, and formed a relatively complete N fixation gene cluster 8-kb long that accounted for 0.22% of the whole genome length. The nifHDK of strain A02 (Curtobacterium sp.) is identical to the Frankia alignment. Function prediction showed high copy number of the nifB gene was related to the oxygen protection mechanism. Our findings provide exciting information about the bacterial genome in relation to N support for transcriptomic and functional studies for increasing N use efficiency in cassava.


Asunto(s)
Manihot , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Manihot/genética , Manihot/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Secuencia de Bases , Bacterias/metabolismo , Nitrógeno/metabolismo
4.
J Hazard Mater ; 458: 131860, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343406

RESUMEN

Silicon spraying on leaves can reduce the accumulation of cadmium (Cd) in rice grain. However, it has been found that not all rice varieties decrease in Cd content after silicon (Si) application. A field study was conducted to check the performance of Si on the accumulation and transport of Cd in four rice varieties. TY390 and YXY2, having 51.5%- 60.6% Cd content of grain was inhibited by foliar Si, were classified as CRS varieties; BXY9978 and YXYLS, having Cd content of grain is nonresponsive with Si, were classified as CNS varieties. The Cd contents were mainly accumulated in stem, especially in the first stem node. While foliar Si reported no changes in the Cd content of first node in four different rice varieties. Comparing the correlation between Si and Cd contents in the above part of the first internode of CRS and CNS, as well as the relative expression of Cd transport genes in the first internode suggested that first internode was the key site to effect Cd transport through Si application, and OsZIP7 is a key Cd transporter protein responsive to Si, leading to different response of Cd transport and accmulation between the CRS and the CNS varieties of rice.


Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Cadmio/metabolismo , Oryza/metabolismo , Silicio/farmacología , Granjas , Contaminantes del Suelo/metabolismo , Grano Comestible/metabolismo
5.
Front Microbiol ; 14: 1133973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998394

RESUMEN

Sugarcane straw returned to the field has rapidly increased due to the bane on straw burning in China. Straw returning of new sugarcane cultivars has been practiced in the fields. Still, its response has not been explored on soil functionality, microbial community and yield of different sugarcane cultivars. Therefore, a comparison was made between an old sugarcane cultivar ROC22 and a new sugarcane cultivar Zhongzhe9 (Z9). The experimental treatments were: without (R, Z), with straw of the same cultivar (RR, ZZ), and with straw of different cultivars (RZ, ZR). Straw returning improved the contents of soil total nitrogen (TN by 73.21%), nitrate nitrogen (NO3 -N by 119.61%), soil organic carbon (SOC by 20.16%), and available potassium (AK by 90.65%) at the jointing stage and were not significant at the seedling stage. The contents of NO3 -N was 31.94 and 29.58%, available phosphorus (AP 53.21 and 27.19%), and available potassium (AK 42.43 and 11.92%) in RR and ZZ were more than in RZ and ZR. Straw returning with the same cultivar (RR, ZZ) significantly increased the richness and diversity of the rhizosphere microbial community. The microbial diversity of cultivar Z9 (treatment Z) was greater than that of cultivar ROC22 (Treatment R). In the rhizosphere, the relative abundance of beneficial microorganisms Gemmatimonadaceae, Trechispora, Streptomyces, Chaetomium, etc., increased after the straw returned. Sugarcane straw enhanced the activity of Pseudomonas and Aspergillus and thus increased the yield of sugarcane., The richness and diversity of the rhizosphere microbial community of Z9 increased at maturity. In ROC22, bacterial diversity increased, and fungal diversity decreased. These findings collectively suggested that the impact of Z9 straw returning was more beneficial than ROC22 on the activity of rhizosphere microorganism's soil functionality and sugarcane production.

6.
Front Microbiol ; 13: 943880, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847108

RESUMEN

Integrons are genetic components that are critically involved in bacterial evolution and antimicrobial resistance by assisting in the propagation and expression of gene cassettes. In recent decades, biochar has been introduced as a fertilizer to enhance physiochemical properties and crop yield of soil, while manure has been used as a fertilizer for centuries. The current study aimed to investigate the impact of biochar, manure, and a combination of biochar and manure on integrons, their gene cassettes, and relative antimicrobial resistance in paddy soil. Field experiments revealed class 1 (CL1) integrons were prevalent in all samples, with higher concentration and abundance in manure-treated plots than in biochar-treated ones. The gene cassette arrays in the paddy featured a broad pool of cassettes with a total of 35% novel gene cassettes. A majority of gene cassettes encoded resistance to aminoglycosides, heat shock protein, heavy metals, pilus secretory proteins, and twin-arginine translocases (Tat), TatA, TatB, and TatC. Both in combination and solo treatments, the diversity of gene cassettes was increased in the manure-enriched soil, however, biochar reduced the gene cassettes' diversity and their cassettes array. Manure considerably enhanced CL1 integrons abundance and antimicrobial resistance, whereas biochar amendments significantly reduced integrons and antimicrobial resistance. The results highlighted the differential effects of biochar and manure on integrons and its gene cassette arrays, showing increased abundance of integrons and antibiotic resistance upon manure application and decrease of the same with biochar. The use of biochar alone or in combination with manure could be a beneficial alternative to mitigate the spread of antimicrobial resistance and bacterial evolution in the environment, specifically in paddy soils.

7.
Antioxidants (Basel) ; 11(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35326148

RESUMEN

Drought and salinity stresses are persistent threat to field crops and are frequently mentioned as major constraints on worldwide agricultural productivity. Moreover, their severity and frequency are predicted to rise in the near future. Therefore, in the present study we investigated the mechanisms underlying plant responses to drought (5, 10 and 15% polyethylene glycol, PEG-6000), salinity (50, 100, and 150 mM NaCl), and their combination, particularly at the seed germination stage, in terms of photosynthesis and antioxidant activity, in four soybean cultivars, viz., PI408105A (PI5A), PI567731 (PI31), PI567690 (PI90), and PI416937 (PI37). Results showed that seed germination was enhanced by 10% PEG and decreased by 15% PEG treatments compared to the control, while seed germination was drastically decreased under all levels of NaCl treatment. Furthermore, combined drought and salinity treatment reduced plant height and root length, shoot and root total weights, and relative water content compared with that of control. However, the reductions were not similar among the varieties, and definite growth retardations were observed in cultivar PI5A under drought and in PI37 under salinity. In addition, all treatments resulted in substantially reduced contents of chlorophyll pigment, anthocyanin, and chlorophyll fluorescence; and increased lipid peroxidation, electrolyte leakage, and non-photochemical quenching in all varieties of soybean as compared to the control plants. However, proline, amino acids, sugars, and secondary metabolites were increased with the drought and salinity stresses alone. Moreover, the reactive oxygen species accumulation was accompanied by improved enzymatic antioxidant activity, such as that of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase. However, the enhancement was most noticeable in PI31 and PI90 under both treatments. In conclusion, the cultivar PI31 has efficient drought and salinity stress tolerance mechanisms, as illustrated by its superior photosynthesis, osmolyte accumulation, antioxidative enzyme activity, and secondary metabolite regulation, compared to the other cultivars, when stressed.

8.
PeerJ ; 10: e12677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127278

RESUMEN

BACKGROUND: Cassava (Manibot esculenta Crantz) is one of the most important among tuber crops. The amount of nitrogen fertilizer used for cassava production is relatively high (400 kg ha-1), but there are few studies on biological nitrogen fixation in this crop. Therefore, it is particularly important to study whether cassava and microorganisms have the associated nitrogen-fixing and other promoting effects of endophytic bacteria. METHODS: We screened 10 endophytic bacteria using the nitrogen-free culture method from the roots of seven cassava cultivars, and the nitrogenase activity of the A02 strain was the highest 95.81 nmol mL-1 h-1. The A02 strain was confirmed as Microbacteriaceae, Curtobacterium using 16S rRNA sequence alignment. The biological and morphological characteristics of strain A02 were further analyzed. RESULTS: The experimental results showed that the biomass of roots, stems, and leaves of cassava inoculated with A02 increased by 17.6%, 12.6%, and 10.3%, respectively, compared to that of the control (without A02 inoculation). These results were not only related to the secretion of auxin (IAA) and solubilization of phosphate but also in the promotion of biological nitrogen fixation of cassava leaves by strain A02. Moreover, the highest 95.81 nmol mL-1h-1 of nitrogenase activity was reported in strain A02, and thus more nitrogen fixation was observed in strain A02. In conclusion, A02 is a newly discovered endophytic nitrogen-fixing bacteria in cassava that can be further used in the research of biological bacterial fertilizers.


Asunto(s)
Manihot , Bacterias Fijadoras de Nitrógeno , Bacterias Fijadoras de Nitrógeno/genética , Manihot/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Verduras/genética , Nitrogenasa
9.
Chemosphere ; 288(Pt 3): 132651, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34699880

RESUMEN

Triclosan is a widely used biocide against microorganisms and is ubiquitously distributed in the environment. Triclosan can be accumulated into plants from soil and hydroponic media. However, little information is currently available on the comparative fate of triclosan in plants under soil and hydroponics cultivation conditions and factors governing uptake. Therefore, this study was designed to comparatively elucidate the uptake mechanism of 14C-triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) grown under different soils and hydroponics and clarify dominant uptake factors. Results showed that 77.2% of 14C were accumulated in youdonger grown in a hydroponic system, while only 1.24%-2.33% were accumulated in the two soil-planting systems. In addition, the bioconcentration factor (BCF) of 14C-triclosan in soil-plant systems was approximately 400-fold smaller than that in the hydroponics. In the soil-planting system, a strong linear correlation was found between concentrations of triclosan in soil pore water and youdonger plant (R2 > 0.85, p < 0.01) at different incubation times. Therefore, triclosan in pore water might be a good indicator to estimate its accumulation in plants and is significantly affected by soil pH, clay, and organic matter contents. The estimated average dietary intakes of triclosan for youdonger grown in hydroponic and soil-planting systems were estimated to be 1.31 ng day-1 kg-1 and 0.05-0.12 ng day-1 kg-1, respectively, much lower than the acceptable dietary intakes of triclosan (83 µg day-1 kg-1), indicating no significant human health risks from youdonger consumption. This study provided insights into uptake routes of triclosan into youdonger plants from both soil and hydroponic systems, bioavailability of triclosan in different soils, and further assessment of human exposure to triclosan from youdonger.


Asunto(s)
Brassica , Contaminantes del Suelo , Triclosán , Humanos , Hidroponía , Suelo , Contaminantes del Suelo/análisis , Triclosán/análisis
10.
Microb Ecol ; 83(4): 971-988, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34309697

RESUMEN

Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant's growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system.


Asunto(s)
Micorrizas , Antioxidantes/metabolismo , Clorofila A/metabolismo , Sequías , Electrólitos/metabolismo , Minerales/metabolismo , Micorrizas/fisiología , Estado Nutricional , Fotosíntesis , Raíces de Plantas/microbiología , Nicotiana
11.
Front Plant Sci ; 13: 1064359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704163

RESUMEN

Most studies have shown that foliar silicon (Si) spraying can reduce the risk of rice quality safety caused by cadmium (Cd) contamination. However, it has recently been found that different rice varieties have different responses to Si. Therefore, we selected six rice varieties (YHSM, YXY1179, YXYLS, JLK1377, MXZ2, and YLY900) to compare the differences in the effects of leaf spray on Cd accumulation among different varieties. According to the change in Cd content in brown rice after Si application, the six rice varieties were divided into two types: Si-inhibited varieties (JLY1377, MXZ2, LY900, and YXYLS) and Si-stimulated varieties (WY1179 and YHSM). For Si-inhibited varieties, the Cd content of rice was reduced by 13.5%-65.7% after Si application. At the same time, the Cd content of the root, stem, leaf, panicle, and glume decreased to different degrees, the Cd content of the cell wall component increased by 2.2%-37.6%, the extraction state of Cd with strong mobile activity (ethanol-extracted and deionized water-extracted) was changed to the extraction state of Cd with weak mobile activity (acetic acid-extracted and hydrochloric acid-extracted), and the upward transport coefficient of different parts was reduced. For Si-stimulated varieties, Si application increased the Cd content of rice by 15.7%-24.1%. At the same time, the cell soluble component Cd content significantly increased by 68.4%-252.4% and changed the weakly mobile extraction state Cd to the strong mobile extraction state, increasing the upward transport coefficient of different sites. In conclusion, different rice varieties have different responses to Si. Foliar Si spraying inhibits the upward migration of Cd of Si-inhibited varieties, thereby reducing the Cd content of rice, but it has the opposite effect on Si-stimulated varieties. This result reminds us that we need to consider the difference in the effect of varieties in the implementation of foliar Si spraying in remediation of Cd-contaminated paddy fields.

13.
Sci Rep ; 11(1): 10048, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976273

RESUMEN

The combined use of organic manure and chemical fertilizer (CF) is considered to be a good method for sustaining high crop yields and improving soil quality. We performed a field experiment in 2019 at the research station of Guanxi University, to investigate the effects of cattle manure (CM) and poultry manure (PM) combined with CF on soil physical and biochemical properties, rice dry matter (DM) and nitrogen (N) accumulation and grain yield. We also evaluated differences in pre-and post-anthesis DM and N accumulation and their contributions to grain yield. The experiment consisted of six treatments: no N fertilizer (T1), 100% CF (T2), 60% CM + 40% CF (T3), 30% CM + 70% CF (T4), 60% PM + 40% CF (T5), and 30% PM + 70% CF (T6). All CF and organic manure treatments provided a total N of 150 kg ha-1. Results showed that the treatment T6 increased leaf net photosynthetic rate (Pn) by 11% and 13%, chlorophyll content by 13% and 15%, total biomass by 9% and 11% and grain yield by 11% and 17% in the early and late season, respectively, compared with T2. Similarly, the integrated manure and CF treatments improved post-antheis DM accumulation and soil properties, such as bulk density, organic carbon, total N, microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) relative to the CF-only treatments. Interestingly, increases in post-anthesis DM and N accumulation were further supported by enhanced leaf Pn and activity of N-metabolizing enzyme during the grain-filling period. Improvement in Pn and N-metabolizing enzyme activity were due to mainly improved soil quality in the combined manure and synthetic fertilizer treatments. Redundancy analysis (RDA) showed a strong relationship between grain yield and soil properties, and a stronger relationship was noted with soil MBC and MBN. Conclusively, a combination of 30% N from PM or CM with 70% N from CF is a promising option for improving soil quality and rice yield.

14.
Environ Sci Pollut Res Int ; 28(33): 45276-45295, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33860891

RESUMEN

Drought is a major environmental threat limiting worldwide crop production. Drought stress affects the tobacco quality and yield; therefore, the current research studies were undertaken to investigate the effectiveness of arbuscular mycorrhizal fungi (AMF) under drought stress on morphological and biochemical attributes of tobacco (Nicotiana tabacum L. variety Yunyan 87). AMF-inoculated and AMF-non-inoculated plants were maintained in a greenhouse and irrigated with a half-strength Hoagland solution (100 mL pot-1) once a week. At harvesting, the plant height, number of leaves, fresh and dry weights, mycorrhizal colonization, and concentration of leaf photosynthetic pigments and photosynthetic rate were measured. Data were statistically analyzed by ANOVA and the principal component (PCA) analyses. The effect of root colonization significantly increased biomass production and essential oil accumulation. Results showed that drought at mild and severe stressed levels significantly affected tobacco growth by decreasing plant height, biomass, and a number of leaves. However, inoculation of AMF considerably increased plant height, fresh and dry weights, chlorophyll (a, b), total chlorophyll, and carotenoid content by 43.84, 40.87 and 49.76, 185.29, 325.60, 173.12, and 211.49%, respectively. Compared with non-inoculated plants, AMF inoculation significantly enhanced the essential oil yield and the uptake of nitrogen, phosphorus, and potassium with the increase of 257.36, 102.71, and 90.76, 62.32, and 84.51%, respectively, in mild drought + AMF-treated plants. Similarly, the antioxidant enzymatic activity, glomalin-related soil protein (GRSP), and accumulation of phenols and flavonoids and osmolytes content were also significantly improved in inoculated plants under drought stress. Additionally, AMF inoculation significantly upregulated the lipoxygenase (LOX) and phenylalanine ammonia-lyase (PAL) enzymes by 197 and 298.44% under drought conditions. These findings depicted that the symbiotic association of AMF improved the overall growth pattern and secondary metabolism in tobacco plants under severe drought stress conditions and may be used as an approaching source of important drugs in the field of pharmacology.


Asunto(s)
Micorrizas , Aceites Volátiles , Sequías , Metabolismo Secundario , Nicotiana
15.
J Environ Manage ; 288: 112489, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823452

RESUMEN

Eroded bare land stabilization is important to reduce soil erosion and stimulate soil carbon (C) sequestration for improved soil biogeochemical quality in hillslope soils. This study investigated the effectiveness of wattle fencing as a bioengineering tool to improve soil stabilization, soil physico-chemical properties and soil organic C dynamics and reduce soil erodibility in the Boyabat mountain regions of Turkey with rough and over-steepened slope (50-70%). Wattle fence treatments were developed in the area of 50 ha in the spring season of 2010 and surface (0-20 cm) and subsurface soil (20-40 cm) samples were taken in Spring, 2015. Results revealed that, compared to control with bare slope, wattle fencing significantly improved some soil physico-chemical, and microbial properties and erodibility indices by increasing clay ratio, dispersion ratio and aggregate stability index in surface and subsoils. Wattle fencing enhanced plant available water contents more in surface than in subsoils. Wattle fencing also increased microbial biomass C contents by 55% and 43% in surface and subsurface soils, respectively. Soil organic C followed similar trends; however, they were indifferent between sampling depths for the control soils. Soil organic C stocks and aggregate stability index were significantly positively correlated and seemed to be better predictor of positive effects of wattle fencing on soil structural stability, erodibility and associated properties. We found positive effects of soil organic C contents on microbial biomass C and soil-water relations suggesting restoration of soil biological functions and favorable influence on soil water retention following wattle fencing. Although sparse vegetation was observed in the research area, our study emphasizes performing further research to understand the effects of wattle fencing along with afforestation with native vegetation on soil erosion rates on a long-term basis by considering the variability in edaphic and environmental factors.


Asunto(s)
Carbono , Suelo , Animales , Biomasa , Carbono/análisis , China , Cresta y Barbas/química , Turquía
16.
J Clin Orthop Trauma ; 17: 233-238, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33898242

RESUMEN

INTRODUCTION: Open fracture management in the United Kingdom and several other countries is guided by the British Orthopaedic Association's Standards for Trauma Number 4 (BOAST-4). This is updated periodically and is based on the best available evidence at the time. The aim of this study is to evaluate the evidence base forming this guidance and to highlight new developments since the last version in 2017. METHODS: Searches have been performed using the PubMed, Embase and Medline databases for time periods a) before December 31, 2017 and from 01/01/2018-01/02/2021. Results have been summarized and discussed. DISCUSSION: Several contentious issues remain within the 2017 guideline. Antibiotic guidance, the use of antibiotic impregnated PMMA beads and intramedullary devices, irrigation in the emergency department, time to theatre and the use of negative pressure dressings and guidance regarding the management of paediatric injuries have all demonstrated no clear consensus. CONCLUSION: The advent of the BOAST-4 guideline has been of huge benefit, however the refinement and improvement of this work remains ongoing. There remains a need for further study into these contentious issues previously listed.

17.
Surg Technol Int ; 38: 415-421, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33755938

RESUMEN

INTRODUCTION: Working-hour restrictions, rota gaps and an increasing drive for theatre efficiency have resulted in challenges to surgical training. As a result, Virtual Reality (VR) has emerged as a popular tool to augment this training. Our aim was to evaluate the validity of a VR simulator for performing percutaneous pedicle screw guidewire insertion. MATERIALS AND METHODS: Twenty-four participants were divided into three equal groups depending on prior surgical experience: a novice group (<10 procedures), an intermediate group (10-50 procedures) and an expert group (>50 procedures). All subjects performed four guidewire insertions on a TraumaVision® simulator (Swemac Innovation AB, Linköping, Sweden) in a set order. Six outcome measures were recorded; total score, time, fluoroscopy exposure, wire depth, zone of placement and wall violations. RESULTS: There were statistically significant differences between the groups for time taken (p<0.001) and fluoroscopy exposure (p<0.001). The novice group performed the worst, and the expert group outperformed both intermediates and novices in both categories. Other outcome results were good and less variable. There was an observed learning effect in the novice and intermediate groups between each of the attempts for both time taken and fluoroscopy exposure. CONCLUSIONS: The study contributes constructive evidence to support the validity of the TraumaVision® simulator as a training tool for pedicle screw guidewire insertion. The simulator is less suitable as an assessment tool. The learning effect was evident in the less experienced groups, suggesting that VR may offer a greater benefit in the early stages of training. Further work is required to assess transferability to the clinical setting.


Asunto(s)
Tornillos Pediculares , Realidad Virtual , Competencia Clínica , Simulación por Computador , Fluoroscopía , Humanos , Aprendizaje , Interfaz Usuario-Computador
18.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498664

RESUMEN

Male sterility (MS) plays a key role in the hybrid breed production of plants. Researchers have focused on the association between genetic male sterility (GMS) and cytoplasmic male sterility (CMS) in kenaf. In this study, P9BS (a natural GMS mutant of the kenaf line P9B) and male plants of P9B were used as parents in multiple backcross generations to produce P9SA, a CMS line with stable sterility, to explore the molecular mechanisms of the association between GMS and CMS. The anthers of the maintainer (P9B), GMS (P9BS), and CMS (P9SA) lines were compared through phenotypic, cell morphological, physiological, biochemical observations, and transcriptome analysis. Premature degradation of the tapetum was observed at the mononuclear stage in P9BS and P9SA, which also had lower activity of reactive oxygen species (ROS) scavenging enzymes compared with P9B. Many coexpressed differentially expressed genes were related to ROS balance, including ATP synthase, electron chain transfer, and ROS scavenging processes were upregulated in P9B. CMS plants had a higher ROS accumulation than GMS plants. The MDA content in P9SA was 3.2 times that of P9BS, and therefore, a higher degree of abortion occurred in P9SA, which may indicate that the conversion between CMS and GMS is related to intracellular ROS accumulation. Our study adds new insights into the natural transformation of GMS and CMS in plants in general and kenaf in particular.


Asunto(s)
Hibiscus/fisiología , Infertilidad Vegetal/fisiología , Proteínas de Plantas/genética , Polen/citología , Especies Reactivas de Oxígeno/metabolismo , Enzimas/genética , Enzimas/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Hibiscus/citología , Hibiscus/genética , Células Vegetales , Infertilidad Vegetal/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Análisis de Secuencia de ARN , Factores de Transcripción/genética
19.
BMJ Simul Technol Enhanc Learn ; 7(3): 154-158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35518564

RESUMEN

Background: Simulation training in surgery is widespread and allows surgeons to practise novel operative techniques and acquaint themselves with unfamiliar surgical procedures. The use of box or virtual reality simulators in many surgical specialities is established; however, its use within trauma and orthopaedics (T&O) in the UK and the attitudes of trainee towards it are not known. The aim of this study is to explore the experiences and opinions of T&O trainees towards simulation training. Methods: An electronic survey consisting of 11 questions on the experiences of simulation training and attitudes towards it was sent to all T&O speciality trainees in London. Results: Fewer than 10% of the responders had used or had ready access to simulators to prepare for unfamiliar operations, with almost 90% preferring to read about them in a journal or watch them on an online video site. Over half had only seen simulators on courses or been aware of them. Over 75% of the responders believed that simulators should be available for trainees, but most did not feel that they should be used as part of formal assessments. Conclusions: Methods for preparing for new operations have expanded over the past 20 years, yet the use of simulator machines is not widespread. Many trainees believe current machines are not widely available nor realistic enough to be useful, with most preferring online videos and operative technique books for preparing for an unfamiliar operation.

20.
Chemosphere ; 263: 127928, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32835975

RESUMEN

Imidacloprid (IMI) is a widely used neonicotinoid insecticide effective against sucking and some chewing insects. Translocation and metabolism of IMI in plants are related to food safety. In this study, 14C-labeled IMI was used to investigate its translocation, transformation, radioactive IMI metabolites and possible metabolic pathways in cabbage. The amount of IMI accumulated in the edible part of cabbage accounted for 80.3-95.4% of the applied amounts by foliar application. There was a tendency to transport from edible parts to inedible parts. The proportions of extractable IMI decreased gradually from 92.4% to 83.0% in edible parts, greater than that in inedible parts over the experiment (0-19 days), while the bound residues showed an opposite trend. The half-life of IMI was determined as 33.0 and 63.0 days in the edible parts and whole plant, respectively. Five radioactive components including the parent IMI were detected by HPLC-LSC. The relative content of M1 was less than 0.01 mg kg-1, which was not required to identify according to the metabolic scheme proposed by the US Environmental Protection Agency. The metabolites N-nitro(1-6-chloro-3-pyridylmethyl)-4,5-dihydroxyimidazol-2-imine (M2), N-nitro(1-6-chloro-3-pyridylmethyl)-4/5-hydroxyimidazole-2-imine (M3) and 1/3-(1-6-chloro-3-pyridylmethyl)-2,4-imidazodione (M4) were identified by LC-QTOF-MS. The primary metabolism of IMI in cabbage included hydrolysis and oxidation. The residue level and daily intake values of IMI in cabbage were estimated to be 0.033-0.078 mg kg-1 and 9.56-20.01 ng d-1 kg-1, respectively, which were far below the maximum residue level and allowable daily intake values.


Asunto(s)
Brassica/metabolismo , Insecticidas/metabolismo , Neonicotinoides/metabolismo , Nitrocompuestos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Imidazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...