Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8511, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595805

RESUMEN

This paper presents a millimeter-wave direction of arrival estimation (DoA) technique powered by dynamic aperture optimization. The frequency-diverse medium in this work is a lens-loaded oversized mmWave cavity that hosts quasi-random wave-chaotic radiation modes. The presence of the lens is shown to confine the radiation within the field of view and improve the gain of each radiation mode; hence, enhancing the accuracy of the DoA estimation. It is also shown, for the first time, that a lens loaded-cavity can be transformed into a lens-loaded dynamic aperture by introducing a mechanically controlled mode-mixing mechanism inside the cavity. This work also proposes a way of optimizing this lens-loaded dynamic aperture by exploiting the mode mixing mechanism governed by a machine learning-assisted evolutionary algorithm. The concept is verified by a series of extensive simulations of the dynamic aperture states obtained via the machine learning-assisted evolutionary optimization technique. The simulation results show a 25[Formula: see text] improvement in the conditioning for the DoA estimation using the proposed technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...