Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 1(5)2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24273653

RESUMEN

The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis, that lead to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, and over a 500 fold up-regulation in 2 year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of PKA, src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 up-regulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD.

2.
Am J Physiol Renal Physiol ; 294(1): F170-6, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959753

RESUMEN

The cadherins are cell adhesion molecules required for cellular homeostasis, and N-cadherin is the predominant cadherin expressed in proximal tubular epithelial cells in humans and rats. Our laboratory previously reported an age-dependent decrease in renal N-cadherin expression; the levels of N-cadherin mRNA and protein expression decreased in parallel, implicating a transcriptional mechanism in the age-dependent loss of expression (19). In this study, we examined the hypothesis that promoter hypermethylation underlies the loss of N-cadherin expression in aging rat kidney. We cloned the 5' flanking region of the rat N-cadherin gene and observed basic promoter activity in a 3,992-bp region localized immediately upstream of the ATG start site. Nucleotide analysis revealed 87% identity with the human N-cadherin minimal promoter region. Consistent with a role for regulation by DNA methylation, we found that a dense CpG island, which spans 1,104 bp (-1,158 to -55), flanks the rat N-cadherin gene; a similar CpG profile was found in the human N-cadherin 5' flanking region. Methylation-specific PCR analysis demonstrated that the promoter region of N-cadherin is heavily methylated in aged, but not young, rat kidney. Interestingly, the promoter is not methylated in age-matched, calorically restricted animals. In contrast, the promoter region is not methylated in either young or aged rat liver; this corresponds to the finding that aging is not associated with decreased N-cadherin expression in the liver. In addition, N-cadherin expression is markedly induced in NRK-52E cells treated with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, further suggesting that methylation at CpG in the promoter region may underlie the age-dependent decrease in renal N-cadherin expression.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Cadherinas/metabolismo , Metilación de ADN , Riñón/metabolismo , Regiones Promotoras Genéticas , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Secuencia de Bases , Cadherinas/genética , Células Cultivadas , Citosina/metabolismo , ADN/genética , ADN/metabolismo , Metilación de ADN/efectos de los fármacos , Decitabina , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/genética , Guanina/metabolismo , Hígado/metabolismo , Masculino , Datos de Secuencia Molecular , Ratas , Ratas Endogámicas F344
3.
Cell Commun Adhes ; 14(4): 111-23, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17957528

RESUMEN

Although ischemia is associated with disruption of cadherin-mediated adhesion in renal cell lines, the impact of decreased cadherin function on the transcriptional activity of beta-catenin remains poorly defined. In these studies, we used a simulated ischemia model in normal rat kidney (NRK) cells to disrupt cadherin function. Cell viability; cadherin/catenin expression, function, and localization; and beta-catenin-mediated transcriptional activity were assessed during ischemia/reperfusion. Following 6 hr of ischemia, a decrease in the expression of E- and N-cadherin was seen that correlated with altered cell morphology indicative of decreased intercellular adhesion. While ischemia was associated with activation of glycogen synthase kinase 3 beta (GSK-3beta), this did not correlate with increased phosphorylation of beta-catenin as assessed by Western blots using phosphoryl-specific antibodies. beta-Catenin was not localized to the nucleus by immunofluorescence in ischemic NRK cells, but rather a strong perinuclear signal was seen in reperfused cells. This was consistent with the finding that neither ischemia nor reperfusion activated the transcriptional activity of beta-catenin as assessed by the TCF-optimal promoter (TOPFlash) construct. However, NRK cells possess a competent Wnt pathway, as challenge with lithium chloride elicited a ten-fold increase in luciferase activity. These results suggest that ischemia-induced disruption of cadherin/catenin complexes is not sufficient to stimulate beta-catenin transcriptional activity in NRK cells.


Asunto(s)
Cadherinas/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Transcripción Genética , beta Catenina/genética , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Inmunoprecipitación , Riñón/citología , Riñón/efectos de los fármacos , Luciferasas/metabolismo , Regiones Promotoras Genéticas , Ratas , Transducción de Señal , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Activación Transcripcional , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
4.
J Histochem Cytochem ; 55(8): 845-52, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17438349

RESUMEN

Mouse tibial growth plates were examined for the presence of adhesion molecules using immunohistochemistry and RT-PCR. All of the components of the classical cadherin/catenin complex (cadherin, alpha-, beta-, and gamma-catenin), as well as a heavy presence of p120, were identified in the murine growth plate. All of the major cadherins (1-5, 11, 13, and 15) were, for the first time, identified and localized in the murine growth plate. We have demonstrated that most of the cadherins and catenins reside in the zone of hypertrophy. Only alpha-catenin and E-, P-, R-, and VE-cadherin were found in all regions of the growth plate. The results for T-cadherin were inconclusive.


Asunto(s)
Cadherinas/metabolismo , Cateninas/metabolismo , Placa de Crecimiento/metabolismo , Animales , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tibia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA