Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 225(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408938

RESUMEN

Light environments differ dramatically between day and night. The transition between diurnal and nocturnal visual ecology has happened repeatedly throughout evolution in many species. However, the molecular mechanism underlying the evolution of vision in recent diurnal-nocturnal transition is poorly understood. Here, we focus on hawkmoths (Lepidoptera: Sphingidae) to address this question by investigating five nocturnal and five diurnal species. We performed RNA-sequencing analysis and identified opsin genes corresponding to the ultraviolet (UV), short-wavelength (SW) and long-wavelength (LW)-absorbing visual pigments. We found no significant differences in the expression patterns of opsin genes between the nocturnal and diurnal species. We then constructed the phylogenetic trees of hawkmoth species and opsins. The diurnal lineages had emerged at least three times from the nocturnal ancestors. The evolutionary rates of amino acid substitutions in the three opsins differed between the nocturnal and diurnal species. We found an excess number of parallel amino acid substitutions in the opsins in three independent diurnal lineages. The numbers were significantly more than those inferred from neutral evolution, suggesting that positive selection acted on these parallel substitutions. Moreover, we predicted the visual pigment absorption spectra based on electrophysiologically determined spectral sensitivity in two nocturnal and two diurnal species belonging to different clades. In the diurnal species, the LW pigments shift 10 nm towards shorter wavelengths, and the SW pigments shift 10 nm in the opposite direction. Taken together, our results suggest that parallel evolution of opsins may have enhanced the colour discrimination properties of diurnal hawkmoths in ambient light.


Asunto(s)
Opsinas , Pigmentos Retinianos , Opsinas/genética , Filogenia , Pigmentos Retinianos/genética , Evolución Molecular , Opsinas de Bastones/genética , Opsinas de Bastones/química
2.
J Exp Biol ; 221(Pt 21)2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30190317

RESUMEN

Histamine is the only known neurotransmitter released by arthropod photoreceptors. Synaptic transmission from photoreceptors to second-order neurons is mediated by the activation of histamine-gated chloride channels (HCLs). These histaminergic synapses have been assumed to be conserved among insect visual systems. However, our understanding of the channels in question has thus far been based on studies in flies. In the butterfly Papilio xuthus, we have identified two candidate histamine-gated chloride channels, PxHCLA and PxHCLB, and studied their physiological properties using a whole-cell patch-clamp technique. We studied the responses of channels expressed in cultured cells to histamine as well as to other neurotransmitter candidates, namely GABA, tyramine, serotonin, d-/l-glutamate and glycine. We found that histamine and GABA activated both PxHCLA and PxHCLB, while the other molecules did not. The sensitivity to histamine and GABA was consistently higher in PxHCLB than in PxHCLA. Interestingly, simultaneous application of histamine and GABA activated both PxHCLA and PxHCLB more strongly than either neurotransmitter individually; histamine and GABA may have synergistic effects on PxHCLs in the regions where they co-localize. Our results suggest that the physiological properties of the histamine receptors are basically conserved among insects, but that the response to GABA differs between butterflies and flies, implying variation in early visual processing among species.


Asunto(s)
Mariposas Diurnas/fisiología , Receptores Histamínicos/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Mariposas Diurnas/genética , Canales de Cloruro/fisiología , Femenino , Células HEK293 , Histamina/farmacología , Humanos , Masculino , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Transfección , Ácido gamma-Aminobutírico/farmacología
3.
PLoS One ; 12(6): e0178373, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28650999

RESUMEN

Humans show various responses to the environmental stimulus in individual levels as "physiological variations." However, it has been unclear if these are caused by genetic variations. In this study, we examined the association between the physiological variation of response to light-stimulus and genetic polymorphisms. We collected physiological data from 43 subjects, including light-induced melatonin suppression, and performed haplotype analyses on the clock genes, PER2 and PER3, exhibiting geographical differentiation of allele frequencies. Among the haplotypes of PER3, no significant difference in light sensitivity was found. However, three common haplotypes of PER2 accounted for more than 96% of the chromosomes in subjects, and 1 of those 3 had a significantly low-sensitive response to light-stimulus (P < 0.05). The homozygote of the low-sensitive PER2 haplotype showed significantly lower percentages of melatonin suppression (P < 0.05), and the heterozygotes of the haplotypes varied their ratios, indicating that the physiological variation for light-sensitivity is evidently related to the PER2 polymorphism. Compared with global haplotype frequencies, the haplotype with a low-sensitive response was more frequent in Africans than in non-Africans, and came to the root in the phylogenetic tree, suggesting that the low light-sensitive haplotype is the ancestral type, whereas the other haplotypes with high sensitivity to light are the derived types. Hence, we speculate that the high light-sensitive haplotypes have spread throughout the world after the Out-of-Africa migration of modern humans.


Asunto(s)
Alelos , Frecuencia de los Genes , Haplotipos , Melatonina/análisis , Proteínas Circadianas Period/genética , Polimorfismo de Nucleótido Simple , Adolescente , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Luz , Masculino , Filogenia , Saliva/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...