Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38541656

RESUMEN

Anomia, or difficulty naming common objects, is the most common, acquired impairment of language. Effective therapeutic interventions for anomia typically involve massed practice at high doses. This requires significant investment from patients and therapists. Aphasia researchers have increasingly looked to neurostimulation to accelerate these treatment effects, but the evidence behind this intervention is sparse and inconsistent. Here, we hypothesised that group-level neurostimulation effects might belie a more systematic structure at the individual level. We sought to test the hypothesis by attempting to predict the immediate (online), individual-level behavioural effects of anodal and sham neurostimulation in 36 chronic patients with anomia, performing naming and size judgement tasks. Using clinical, (pre-stimulation) behavioural and MRI data, as well as Partial Least Squares regression, we attempted to predict neurostimulation effects on accuracies and reaction times of both tasks. Model performance was assessed via cross-validation. Predictive performances were compared to that of a null model, which predicted the mean neurostimulation effects for all patients. Models derived from pre-stimulation data consistently outperformed the null model when predicting neurostimulation effects on both tasks' performance. Notably, we could predict behavioural declines just as well as improvements. In conclusion, inter-patient variation in online responses to neurostimulation is, to some extent, systematic and predictable. Since declines in performance were just as predictable as improvements, the behavioural effects of neurostimulation in patients with anomia are unlikely to be driven by placebo effects. However, the online effect of the intervention appears to be as likely to interfere with task performance as to improve it.

2.
Neuroimage Clin ; 39: 103452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37321143

RESUMEN

Aphasia is an acquired disorder caused by damage, most commonly due to stroke, to brain regions involved in speech and language. While language impairment is the defining symptom of aphasia, the co-occurrence of non-language cognitive deficits and their importance in predicting rehabilitation and recovery outcomes is well documented. However, people with aphasia (PWA) are rarely tested on higher-order cognitive functions, making it difficult for studies to associate these functions with a consistent lesion correlate. Broca's area is a particular brain region of interest that has long been implicated in speech and language production. Contrary to classic models of speech and language, cumulative evidence shows that Broca's area and surrounding regions in the left inferior frontal cortex (LIFC) are involved in, but not specific to, speech production. In this study we aimed to explore the brain-behaviour relationships between tests of cognitive skill and language abilities in thirty-six adults with long-term speech production deficits caused by post-stroke aphasia. Our findings suggest that non-linguistic cognitive functions, namely executive functions and verbal working memory, explain more of the behavioural variance in PWA than classical language models imply. Additionally, lesions to the LIFC, including Broca's area, were associated with non-linguistic executive (dys)function, suggesting that lesions to this area are associated with non-language-specific higher-order cognitive deficits in aphasia. Whether executive (dys)function - and its neural correlate in Broca's area - contributes directly to PWA's language production deficits or simply co-occurs with it, adding to communication difficulties, remains unclear. These findings support contemporary models of speech production that place language processing within the context of domain-general perception, action and conceptual knowledge. An understanding of the covariance between language and non-language deficits and their underlying neural correlates will inform better targeted aphasia treatment and outcomes.


Asunto(s)
Afasia , Trastornos del Conocimiento , Accidente Cerebrovascular , Adulto , Humanos , Imagen por Resonancia Magnética/efectos adversos , Accidente Cerebrovascular/complicaciones , Trastornos del Conocimiento/complicaciones , Cognición
3.
Elife ; 102021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34812140

RESUMEN

Skill learning is a fundamental adaptive process, but the mechanisms remain poorly understood. Some learning paradigms, particularly in the memory domain, are closely associated with gamma activity that is amplitude modulated by the phase of underlying theta activity, but whether such nested activity patterns also underpin skill learning is unknown. Here, we addressed this question by using transcranial alternating current stimulation (tACS) over sensorimotor cortex to modulate theta-gamma activity during motor skill acquisition, as an exemplar of a non-hippocampal-dependent task. We demonstrated, and then replicated, a significant improvement in skill acquisition with theta-gamma tACS, which outlasted the stimulation by an hour. Our results suggest that theta-gamma activity may be a common mechanism for learning across the brain and provides a putative novel intervention for optimizing functional improvements in response to training or therapy.


Asunto(s)
Aprendizaje/fisiología , Destreza Motora/fisiología , Adulto , Femenino , Humanos , Masculino , Desempeño Psicomotor , Estimulación Transcraneal de Corriente Directa , Adulto Joven
4.
Sci Rep ; 11(1): 18572, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535718

RESUMEN

Stroke is a leading cause of disability, and language impairments (aphasia) after stroke are both common and particularly feared. Most stroke survivors with aphasia exhibit anomia (difficulties with naming common objects), but while many therapeutic interventions for anomia have been proposed, treatment effects are typically much larger in some patients than others. Here, we asked whether that variation might be more systematic, and even predictable, than previously thought. 18 patients, each at least 6 months after left hemisphere stroke, engaged in a computerised treatment for their anomia over a 6-week period. Using only: (a) the patients' initial accuracy when naming (to-be) trained items; (b) the hours of therapy that they devoted to the therapy; and (c) whole-brain lesion location data, derived from structural MRI; we developed Partial Least Squares regression models to predict the patients' improvements on treated items, and tested them in cross-validation. Somewhat surprisingly, the best model included only lesion location data and the hours of therapy undertaken. In cross-validation, this model significantly out-performed the null model, in which the prediction for each patient was simply the mean treatment effect of the group. This model also made promisingly accurate predictions in absolute terms: the correlation between empirical and predicted treatment response was 0.62 (95% CI 0.27, 0.95). Our results indicate that individuals' variation in response to anomia treatment are, at least somewhat, systematic and predictable, from the interaction between where and how much lesion damage they have suffered, and the time they devoted to the therapy.


Asunto(s)
Anomia/etiología , Anomia/terapia , Accidente Cerebrovascular/complicaciones , Anomia/diagnóstico , Encéfalo/patología , Manejo de la Enfermedad , Femenino , Humanos , Masculino , Pronóstico
5.
Clin Neurophysiol ; 127(6): 2482-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27178868

RESUMEN

OBJECTIVE: Surround inhibition (SI) is thought to facilitate focal contraction of a hand muscle by keeping nearby muscles silent. Unexpectedly, SI is reduced in skilled pianists. We tested whether repeated practice of focal contraction in non-pianists could reduce SI. METHODS: Motor-evoked potentials were elicited by transcranial magnetic stimulation in the relaxed abductor digiti minimi randomly at the onset and 5s after offset of a 2s focal contraction (10% maximum) of the first dorsal interosseous (FDI). Over 5 blocks of 40 trials participants obtained points for increasing contraction speed and stability in FDI. In a final block, the interval between contractions was varied randomly to increase attention to the task. RESULTS: Over the first 5 blocks, SI declined as performance (points scored) improved. In the final "attention" block SI increased towards baseline without affecting performance. CONCLUSIONS: Although SI may be useful during the early stages of learning, skilled focal finger movement does not require SI to prevent activity in non-involved muscles. This could be due to better targeting of the excitatory command to move. Results from the final block suggest that increased attention can re-engage SI when task parameters change. SIGNIFICANCE: SI is not necessary for successful focal contraction, but may contribute during learning and during attention to task.


Asunto(s)
Mano/inervación , Aprendizaje , Corteza Motora/fisiología , Inhibición Neural , Desempeño Psicomotor , Adulto , Atención , Potenciales Evocados Motores , Ejercicio Físico , Femenino , Mano/fisiología , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/inervación , Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...