Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38674736

RESUMEN

Beneficial plant microbes can enhance the growth and quality of field crops. However, the benefits of microbes using cheap and efficient inoculation methods are still uncommon. Seed coating with biocontrol agents can reduce the amount of inocula along with having the potential for large-scale application. Hence, in this research work, the comparative potential of tomato seed coating and biopriming with Bacillus aryabhattai Z-48, harboring multiple plant-beneficial traits, to suppress Fusarium wilt disease along with its beneficial effect on seedling and plant growth promotion was analyzed. Among two bacterial strains, B. aryabhattai Z-48 was able to antagonize the mycelial growth of Fusarium oxysporum f.sp. lycopersici in vitro and its application as a seed coating superiorly benefited seedling traits like the germination percentage, vigor index, and seedling growth index along with a reduced germination time. The seed coating with B. aryabhattai Z-48 resulted in significant increases in the shoot length, root length, dry biomass, and total chlorophyll contents when compared with the bioprimed seeds with the same bacterial strain and non-inoculated control plants. The seed coating with B. aryabhattai Z-48 significantly reduced the disease index (>60%) compared with the pathogen control during pot trials. Additionally, the seed coating with B. aryabhattai Z-48 resulted in a significantly higher production of total phenolics, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase enzyme in tomato plants. The GC/MS-based non-targeted metabolic profiling indicated that the seed coating with B. aryabhattai Z-48 could cause large-scale metabolite perturbations in sugars, sugar alcohols, amino acids, and organic acids to increase the fitness of tomato plants against biotic stress. Our study indicates that a tomato seed coating with B. aryabhattai Z-48 can improve tomato growth and suppress Fusarium wilt disease effectively under conventional agricultural systems.

3.
Microorganisms ; 12(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38399708

RESUMEN

Plant growth-promoting bacteria (PGPRs) have the potential to act as biofertilizers and biopesticides. This study was planned to explore indigenously isolated PGPRs as a potential candidate to control charcoal rot that affects various crops including soybean. Among the four different tested species of PGPRs, Bradyrhizobium japonicum (FCBP-SB-406) showed significant potential to enhance growth and control soil borne pathogens such as Macrophomina phaseolina. Bacillus subtilis (FCBP-SB-324) followed next. Bradyrhizobium japonicum (FCBP-SB-406) reduced disease severity up to 81.25% in comparison to the control. The strain showed a strong fertilizing effect as a highly significant increase in biomass and other agronomic parameters was recorded in plants grown in its presence. The same was supported by the Pearson's correlation and principal component analysis. A decrease in disease incidence and severity may be due to the induced resistance imparted by the bacterium. This resulted in significant increments in quantities of defense enzymes, including catalase, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL) and superoxide dismutase (SOD). A significant production of proteases, catalases and hydrogen cyanide by B. japonicum (FCBP-SB-406) can also be associated to mycoparasitism. The establishment of PGPRs in treated soils also showed positive effects on soil health. Total metabolite profiling of treated plants in comparison to the control showed the upregulation of many flavonoids, isoflavonoids and amino acids. Many of these compounds have been well reported with antimicrobial activities. Bradyrhizobium japonicum (FCBP-SB-406) can be employed for the production of a potential formulation to support sustainable agriculture by reducing the input of synthetic pesticides and fertilizers.

4.
Int J Phytoremediation ; 26(5): 710-726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37753953

RESUMEN

Salt toxicity is one of the foremost environmental stresses that declines nutrient uptake, photosynthetic activity and growth of plants resulting in a decrease in crop yield and quality. Seed priming has become an emergent strategy to alleviate abiotic stress and improve plant growth. During the current study, turnip seed priming with sodium selenite (Na2SeO3) was investigated for its ability to mitigate salt stress. Turnip (Brassica rapa L. var. Purple Top White Globe) seeds primed with 75, 100, and 125 µML-1 of Se were subjected to 200 mM salt stress under field conditions. Findings of the current field research demonstrated that salt toxicity declined seed germination, chlorophyll content, and gas exchange characteristics of B. rapa seedling. Whereas, Se-primed seeds showed higher germination rate and plant growth which may be attributed to the decreased level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased synthesis of proline (36%) and besides increased total chlorophyll (46%) in applied turnip plants. Higher expression levels of genes encoding antioxidative activities (CAT, POD, SO,D and APX) mitigated oxidative stress induced by the salt toxicity. Additionally, Se treatment decreased Na+ content and enhanced K+ content resulting in elevated K+/Na+ ratio in the treated plants. The in-silico assessment revealed the interactive superiority of Se with antioxidant enzymes including CAT, POD, SOD, and APX as compared to sodium chloride (NaCl). Computational study of enzymes-Se and enzymes-NaCl molecules also revealed the stress ameliorative potential of Se through the presence of more Ramachandran-favored regions (94%) and higher docking affinities of Se (-6.3). The in-silico studies through molecular docking of Na2SeO3, NaCl, and ROS synthesizing enzymes (receptors) including cytochrome P450 (CYP), lipoxygenase (LOX), and xanthine oxidase (XO), also confirmed the salt stress ameliorative potential of Se in B. rapa. The increased Ca, P, Mg, and Zn nutrients uptake nutrients uptake in 100 µML-1 Se primed seedlings helped to adjust the stomatal conductivity (35%) intercellular CO2 concentration (32%), and photosynthetic activity (41%) resulting in enhancement of the yield attributes. More number of seeds per plant (6%), increased turnip weight (115 gm) root length (17.24 cm), root diameter (12 cm) as well as turnip yield increased by (9%tons ha-1) were recorded for 100 µML-1 Se treatment under salinity stress. Findings of the current research judiciously advocate the potential of Se seed priming for salt stress alleviation and growth improvement in B. rapa.


According to our best of knowledge, it is the first time that seed primed with Selenium have been evaluated regarding NaCl stress mitigation in turnip. Salinity toxicity negatively affected physiochemical activities and growth of B.rapa.Seed priming with Selenium (Na2SeO3) mitigated salinity stress.Selenium (Se) enhanced nutrition, photosynthetic and antioxidant activity of applied plants.Selenium treated plants exhibited improved growth and reduced salinity content.


Asunto(s)
Brassica napus , Selenio , Selenio/metabolismo , Brassica napus/metabolismo , Peróxido de Hidrógeno/metabolismo , Simulación del Acoplamiento Molecular , Cloruro de Sodio/metabolismo , Biodegradación Ambiental , Antioxidantes/metabolismo , Plantones , Clorofila/metabolismo , Solución Salina/metabolismo , Sodio , Semillas/metabolismo
5.
Microorganisms ; 11(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894261

RESUMEN

Fusarium wilt diseases severely influence the growth and productivity of numerous crop plants. The consortium of antagonistic rhizospheric Bacillus strains and quercetin were evaluated imperatively as a possible remedy to effectively manage the Fusarium wilt disease of tomato plants. The selection of Bacillus strains was made based on in-vitro antagonistic bioassays against Fusarium oxysporum f.sp. lycoprsici (FOL). Quercetin was selected after screening a library of phytochemicals during in-silico molecular docking analysis using tomato LysM receptor kinases "SILKY12" based on its dual role in symbiosis and plant defense responses. After the selection of test materials, pot trials were conducted where tomato plants were provided consortium of Bacillus strains as soil drenching and quercetin as a foliar spray in different concentrations. The combined application of consortium (Bacillus velezensis strain BS6, Bacillus thuringiensis strain BS7, Bacillus fortis strain BS9) and quercetin (1.0 mM) reduced the Fusarium wilt disease index up to 69%, also resulting in increased plant growth attributes. Likewise, the imperative application of the Bacillus consortium and quercetin (1.0 mM) significantly increased total phenolic contents and activities of the enzymes of the phenylpropanoid pathway. Non-targeted metabolomics analysis was performed to investigate the perturbation in metabolites. FOL pathogen negatively affected a range of metabolites including carbohydrates, amino acids, phenylpropanoids, and organic acids. Thereinto, combined treatment of Bacillus consortium and quercetin (1.0 mM) ameliorated the production of different metabolites in tomato plants. These findings prove the imperative use of Bacillus consortium and quercetin as an effective and sustainable remedy to manage Fusarium wilt disease of tomato plants and to promote the growth of tomato plants under pathogen stress conditions.

6.
PeerJ ; 11: e15686, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719109

RESUMEN

To meet food security, commercial fertilizers are available to boost wheat yield, but there are serious ill effects associated with these fertilizers. Amongst various organic alternatives, inoculating crop fields with mycorrhizal species is the most promising option. Although, mycorrhizae are known to enhance wheat yield, but how the mycorrhizae influence different yield and quality parameters of wheat, is not clear. Therefore, this study was undertaken to investigate the influence of indigenous mycorrhizal species on the growth of wheat, its nutritional status and soil properties, in repeated set of field experiments. In total 11 species of mycorrhizae were isolated from the experimental sites with Claroideoglomus, being the most dominant one. Five different treatments were employed during the present study, keeping plot size for each replicate as 6 × 2 m. Introduction of consortia of mycorrhizae displayed a significant increase in number of tillers/plant (49.5%), dry biomass (17.4%), grain yield (21.2%) and hay weight (16.7%). However, there was non-significant effect of mycorrhizal inoculation on 1,000 grains weight. Moreover, protein contents were increased to 24.2%. Zinc, iron, phosphorus and potassium concentrations were also increased to 24%, 21%, 30.9% and 14.8%, respectively, in wheat grains. Enhancement effects were also noted on soil fertility such as soil organic carbon % age, available phosphorus and potassium were increased up to 64.7%, 35.8% and 23.9%, respectively. Herein, we concluded that mycorrhizal introduction in wheat fields significantly increased tillering in wheat and this increased tillering resulted in overall increase in wheat biomass/yield. Mycorrhizae also enhanced nutritional attributes of wheat grains as well as soil fertility. The use of mycorrhizae will help to reduce our dependance on synthetic fertilizers in sustainable agriculture.


Asunto(s)
Micorrizas , Suelo , Triticum , Carbono , Fertilizantes , Fósforo , Potasio
7.
Front Plant Sci ; 13: 1052984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523618

RESUMEN

Plant disease management using nanotechnology is evolving continuously across the world. The purpose of this study was to determine the effect of different concentrations of green synthesized zinc oxide nanoparticles (ZnO NPs) using Trachyspermum ammi seed extract on Cercospora leaf spot disease in mung bean plants under in-vitro and in-planta conditions. Additionally, the effects on mung bean agronomic and physiological parameters were also assessed. The green synthesized ZnO NPs were characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Green synthesized NPs were tested for their ability to inhibit fungal growth at five different concentrations under in-vitro experiment. After 7 days of inoculation, ZnO NPs (1200 ppm) inhibited mycelial growth substantially (89.86% ± 0.70). The in-planta experiment showed statistically significant result of disease control (30% ± 11.54) in response to 1200 ppm ZnO NPs. The same treatment showed statistically significant improvements in shoot length, root length, number of leaves, number of pods, shoot fresh weight (28.62%), shoot dry weight (85.18%), root fresh weight (38.88%), and root dry weight (38.88%) compared to the control. Our findings show that green synthesized ZnO NPs can control Cercospora canescens in mung bean, pointing to their use in plant disease control and growth enhancement.

8.
Front Plant Sci ; 13: 964041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275566

RESUMEN

Environmental pollutants and climate change are the major cause of abiotic stresses. Hexachlorobenzene (HCB) is an airborne and aero-disseminated persistent organic pollutants (POP) molecule causing severe health issues in humans, and temperature extremes and HCB in combination severely affect the growth and yield of crop plants around the globe. The higher HCB uptake and accumulation by edible plants ultimately damage human health through the contaminated food chain. Hence, confining the passive absorbance of POPs is a big challenge for researchers to keep the plant products safer for human consumption. BioClay functional layered double hydroxide is an effective tool for the stable delivery of acidic molecules on plant surfaces. The current study utilized gibberellic acid (GA3) impregnated BioClay (BioClay GA ) to alleviate abiotic stress in Brassica alboglabra plants. Application of BioClay GA mitigated the deleterious effects of HCB besides extreme temperature stress in B. alboglabra plants. BioClay GA significantly restricted HCB uptake and accumulation in applied plants through increasing the avoidance efficacy (AE) up to 377.61%. Moreover, the exogenously applied GA3 and BioClay GA successfully improved the antioxidative system, physiochemical parameters and growth of stressed B. alboglabra plants. Consequently, the combined application of BioClay and GA3 can efficiently alleviate low-temperature stress, heat stress, and HCB toxicity.

9.
Front Pharmacol ; 13: 827901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355712

RESUMEN

Chemotherapy is considered a most effective way to treat cancer. However, it is very common that chemotherapy causes unbearable mental and physical side effects to cancer patients, which ultimately reduces the patients' confidence of overcoming diseases and compromises the treatment of chemotherapy. Cisplatin (DDP), a widely used anticancer agent for various types of cancers, also damages nontumor cells and tissues, which are mostly related to the activation of the inflammation pathway. Previously, we have discovered a few rational formulas of food as medicine materials that reduced systemic inflammation in in vitro and in vivo models. Hence, this study reports the ability of an optimized traditional Chinese anti-inflammatory formulation capable of synergizing the antitumor effect of DDP in vitro and in vivo. More significantly, by formulation of two anti-inflammatory herbal medicine, the Chrysanthemum × morifolium (Ramat.) Hemsl [Asteraceae] and Lonicera japonica Thunb [Caprifoliaceae] with a mediator Glycyrrhiza uralensis Fisch. ex DC [Fabaceae], a best formula relieved the kidney damage imposed by DDP. Treatments of various combinations of major chemical components of the three herbs also exhibited a similar trend for lowering the DDP-induced nephrotoxicity; however, contrary to that of the formula of herbal extracts, all chemical formulas could not recover the body weight and food intake of the tumor-bearing mice treated by DDP. Our findings suggested that the therapeutic index of DDP-based chemotherapy was able to be improved by minimizing toxicities from the two-herb formula to inhibit the inflammation in mouse tumor models and DDP-induced acute kidney injury mouse models.

10.
Front Plant Sci ; 13: 825829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356123

RESUMEN

At present, the alleviation of stress caused by climate change and environmental contaminants is a crucial issue. Dichlorodiphenyltrichloroethane (DDT) is a persistent organic pollutant (POP) and an organochlorine, which causes significant health problems in humans. The stress caused by cadmium (Cd) and the toxicity of DDT have direct effects on the growth and yield of crop plants. Ultimately, the greater uptake and accumulation of DDT by edible plants affects human health by contaminating the food chain. The possible solution to this challenging situation is to limit the passive absorption of POPs into the plants. Calcium (Ca) is an essential life component mandatory for plant growth and survival. This study used impregnated Ca (BdCa) of benzenedicarboxylic acid (Bd) to relieve abiotic stress in plants of Brassica alboglabra. BdCa mitigated the deleterious effects of Cd and reduced DDT bioaccumulation. By increasing the removal efficacy (RE) up to 256.14%, BdCa greatly decreased pollutant uptake (Cd 82.37% and DDT 93.64%) and supported photosynthetic machinery (86.22%) and antioxidant enzyme defenses (264.73%), in applied plants. Exogenously applied Bd also successfully improved the antioxidant system and the physiochemical parameters of plants. However, impregnation with Ca further enhanced plant tolerance to stress. This novel study revealed that the combined application of Ca and Bd could effectively relieve individual and combined Cd stress and DDT toxicity in B. alboglabra.

11.
Toxins (Basel) ; 14(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051001

RESUMEN

The aqueous extracts of leaves and shoots of Mentha arvensis were checked for their potential to biodegrade aflatoxin B1 and B2 (AFB1; 100 µg/L and AFB2; 50 µg/L) through in vitro assays. Overall, the results showed that leaf extract degrades aflatoxins more efficiently than the shoot extract. First, the pH, temperature and incubation time were optimized for maximum degradation by observing this activity at different temperatures between 25 and 60 °C, pH between 2 and 10 and incubation time from 3 to 72 h. In general, an increase in all these parameters significantly increased the percentage of biodegradation. In vitro trials on mature maize stock were performed under optimized conditions, i.e., pH 8, temperature 30 °C and an incubation period of 72 h. The leaf extract resulted in 75% and 80% biodegradation of AFB1 and AFB2, respectively. Whereas the shoot extract degraded both toxins up to 40-48%. The structural elucidation of degraded toxin products by LCMS/MS analysis showed seven degraded products of AFB1 and three of AFB2. MS/MS spectra showed that most of the products were formed by the loss of the methoxy group from the side chain of the benzene ring, the removal of the double bond in the terminal furan ring and the modification of the lactone group, indicating less toxicity compared to the parent compounds. The degraded products showed low toxicity against brine shrimps, confirming that M. arvensis leaf extract has significant potential to biodegrade aflatoxins.


Asunto(s)
Aflatoxina B1/metabolismo , Aflatoxinas/metabolismo , Mentha/química , Mentha/metabolismo , Extractos Vegetales/metabolismo , Hojas de la Planta/metabolismo , Brotes de la Planta/metabolismo , Aflatoxinas/química , Estructura Molecular , Pakistán , Extractos Vegetales/química , Hojas de la Planta/química , Brotes de la Planta/química
12.
Int J Phytoremediation ; 24(4): 364-372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34282979

RESUMEN

During the current study, the effects of magnesium oxide nanoparticles (5 mmol/L) were observed on the growth and mineral nutrients of Daucus carota under lead (Pb) stress. The results demonstrated that Pb stress decreased the growth and photosynthetic rate of D. carota plants. Furthermore, Pb stressed plants showed decreased uptake of mineral nutrients including Zn, Na, Fe, K, Ca, Mg, K, and Cu. Similarly, Pb stressed plants showed enhanced electrolyte leakage (EL) and malondialdehyde (MDA) content. However, magnesium oxide nanoparticles detoxified ROS to mitigate Pb stress and improved the growth of plants. Magnesium oxide nanoparticles also escalated the activity of antioxidant enzymes including superoxide dismutase (SOD) and Catalase (CAT). A higher amount of Pb content was observed in the roots as compared to the shoot of plants. Lead toxicity reduced manganese accumulation in D. carota plants. The increased concentration of iron, manganese, copper, and zinc advocates stress the ameliorative role of Pb stress in plants. Novelty statementThe role of MgONPs in the alleviation of Pb-toxicity in Daucus carota has never been exploited. In addition, the potential of MgONPs to enhance nutritional content in D. carota via modulation in antioxidant system and polyamines have never been reported.


Asunto(s)
Daucus carota , Nanopartículas , Antioxidantes , Biodegradación Ambiental , Plomo/toxicidad , Óxido de Magnesio , Poliaminas , Superóxido Dismutasa
13.
Front Plant Sci ; 13: 1050359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714767

RESUMEN

Various abiotic stresses may affect the germination, growth, and yield of direct-seeded vegetable crops. Seed priming with effective antioxidant mediators may alleviate these environmental stresses by maintaining uniformity in seed germination and improving the subsequent health of developing seedlings. Salt-induced stress has become a limiting factor for the successful cultivation of Brassica rapa L., especially in Southeast Asian countries. The present study was performed to elucidate the efficacy of seed priming using selenium (Se) in mitigating salt-induced oxidative stress in turnip crops by reducing the uptake of Na+. In this study, we administered three different levels of Se (Se-1, 75 µmol L-1; Se-2, 100 µmol L-1; and Se-3, 125 µmol L-1) alone or in combination with NaCl (200 mM). Conspicuously, salinity and Se-2 modulated the expression levels of the antioxidant genes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX). The upregulated expression of stress-responsive genes alleviated salt stress by scavenging the higher reactive oxygen species (ROS) level. The stress ameliorative potential of Se (Se-2 = 100 µmol L-1) enhanced the final seed germination percentage, photosynthetic content, and seedling biomass production up to 48%, 56%, and 51%, respectively, under stress. The advantageous effects of Se were attributed to the alleviation of salinity stress through the reduction of the levels of malondialdehyde (MDA), proline, and H2O2. Generally, treatment with Se-2 (100 µmo L-1) was more effective in enhancing the growth attributes of B. rapa compared to Se-1 (75 µmo L-1) and Se-3 (125 µmo L-1) under salt-stressed and non-stressed conditions. The findings of the current study advocate the application of the Se seed priming technique as an economical and eco-friendly approach for salt stress mitigation in crops grown under saline conditions.

14.
Front Plant Sci ; 12: 722498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512701

RESUMEN

Current research was conducted to explore the effects of liquiritoside on the growth and physiochemical features of Chinese flowering cabbage (Brassica rapa subsp. parachinensis) under lead (Pb) stress. Lead stressed B. rapa plants exhibited decreased growth parameters, chlorophyll, and carotenoid contents. Moreover, Pb toxicity escalated the synthesis of malondialdehyde (MDA), hydrogen peroxide (H2O2), flavonoids, phenolics, and proline in treated plants. Nevertheless, foliar application of liquiritoside mitigated Pb toxicity by decreasing oxidative stress by reducing cysteine, H2O2, and MDA contents in applied plants. Liquiritoside significantly increased plant height, shoot fresh weight and dry weight, number of leaves, and marketable value of Chinese flowering cabbage plants exposed to Pb toxicity. This biotic elicitor also enhanced the proline, glutathione, total phenolics, and flavonoid contents in Chinese flowering cabbage plants exposed to Pb stress compared with the control. Additionally, total glucosinolate content, phytochelatins (PCs), and non-protein thiols were effectively increased in plants grown under Pb regimes compared with the control plants. Overall, foliar application of liquiritoside can markedly alleviate Pb stress by restricting Pb translocation in Chinese flowering cabbage.

15.
Plant Physiol Biochem ; 166: 874-886, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34237605

RESUMEN

Currently, producing safe agricultural commodities from the crop plants cultivated in the soil with increasing heavy metal toxicity is a gigantic challenge in front of researchers. Heavy metals are absorbed and translocated in the crop plants and then transferred to every downstream consumer of the food chain, including humans, causing serious disorders and ailments. The current research presents a combined schematic application of iron nanoparticles (Fe-NPs) and/or silicon (Si), to mitigate cadmium (Cd) stress in Lima bean (Phaseolus lunatus). It was noted that Cd-induced toxicity curtailed growth, antioxidative machinery, glyoxalase system and nutrient uptake of the plants. Furthermore, the physiochemical features of Cd stressed plants, including carotenoids, chlorophyll, photochemical quenching, photosynthetic efficiency, and leaf relative water contents, were improved by the combined application of Si and Fe-NPs. Moreover, higher levels of malondialdehyde (MDA), methylglyoxal (MG), hydrogen peroxide (H2O2), and electrolyte leakage (EL) were observed in Cd stressed plants. Nevertheless, the independent treatment or combined application of Si and/or Fe-NPs attenuated the adversative effects of Cd on the aforementioned growth attributes. Furthermore, Si and Fe-NPs defended plants from the injurious effects of MG by improving the activities of the glyoxalase enzyme. The Si and Fe-NPs reduced Cd contents but at the same time improved uptake and accumulation of nutrients in treated plants exposed to the Cd regime. This study highlights that Si and Fe-NPs have enormous potential to mitigate Cd-induced phytotoxicity by declining Cd uptake and improving the growth attributes of plants if applied in combination.


Asunto(s)
Nanopartículas , Phaseolus , Contaminantes del Suelo , Antioxidantes , Cadmio/análisis , Cadmio/toxicidad , Peróxido de Hidrógeno , Hierro , Silicio/farmacología , Contaminantes del Suelo/análisis
16.
Front Pharmacol ; 12: 658670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140890

RESUMEN

The roots of Glycyrrhiza spp. have been utilized in Traditional Chinese medicine (TCM) for thousands of years. Non-traditional (aerial) parts constitute a large portion of the biomass of Glycyrrhiza plants and are mostly discarded after harvesting the roots and rhizomes. Through comparative phytochemical and anti-inflammatory activity analyses, this study explored the potential benefits of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. as medicinal materials. First, a combined approach based on GC/MS and UHPLC-ESI-QTof MS analysis was adopted for the identification and quantitative examination of medicinally important compounds from G. uralensis. Additionally, a bioassay-guided fractioning of ethanolic extracts of G. uralensis leaf material was performed and its anti-inflammatory activity was tested. The aerial portion of G. uralensis was rich in medicinally important compounds. Two compounds (henicosane-1 and decahydroisoquinoline-2) were found to exert a significant anti-inflammatory effect, inhibiting the release of pro-inflammatory mediators (NO and PGE2) and cytokines (IL-1ß, IL6, and TNF-α), without exerting cytotoxic effects. Moreover, both compounds down-regulated iNOS and COX-2 mRNA expression. These results suggest that non-traditional parts of G. uralensis are suitable sources of bioactive metabolites that can be explored for medicinal purposes.

17.
ACS Omega ; 6(3): 1797-1808, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33521421

RESUMEN

This investigation characterizes an acyltransferase enzyme responsible for the pathogenicity of Phytophthora melonis. The protein was characterized in vitro for its physicochemical properties. The biochemical characterization, including thermal and pH stability, revealed the 35 °C temperature and 7.0 pH as the optimum conditions for the enzyme. Applying the Tween-80 solution enhanced the activity up to 124.9%. Comprehensive structural annotation revealed two domains, A (ranging from residues 260 to 620) and B (ranging from 141 to 219). Domain A had transglutaminase (T-Gase) elicitor properties, while B possessed antifreeze features. Rigorous sequence characterization of the acyltransferase tagged it as a low-temperature-resistant protein. Further, the taxonomic distribution analysis of the protein highlighted three genera in Oomycetes, i.e., Pythium, Phytophthora, and Plasmopara, bearing this protein. However, some taxonomic groups other than Oomycetes (i.e., archaea and bacteria) also contained the protein. Functional studies of structurally analogous proteins spanned 10 different taxonomic groups. These revealed TGase elicitors (10%), phytopathogen effector proteins RxLR (4%), transporter family proteins (3%), and endonucleases (1%). Other analogues having one percent of their individual share were HIV tat-specific factor 1, protocadherin fat 4, transcription factor 1, and 3-hydroxyisobutyrate dehydrogenase. Because the plant infection by P. melonis is a complex process regulated by a profusion of extracellular signals secreted by both host plants and the pathogen, this study will be of help in interpreting the cross-talk in the host-pathogen system.

18.
Ecotoxicol Environ Saf ; 213: 112047, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33601172

RESUMEN

In this study, we have evaluated the role of karrikin (KAR1) against the absorption and translocation of a persistent organic pollutant (POP), 2,4,4'-Tribromodiphenyl ether (BDE-28) in plants, in the presence of two other stressors, cadmium (Cd) and high temperature. Furthermore, it correlates the physiological damages of Brassica alboglabra with the three stresssors separately. The results revealed that the post-germination application of KAR1 successfully augmented the growth (200%) and pertinent physiochemical parameters of B. alboglabra. KAR1 hindered air absorption of BDE-28 in plant tissues, and reduced its translocation coefficient (TF). Moreover, BDE-28 was the most negatively correlated (-0.9) stressor with chlorophyll contents, while the maximum mitigation by KAR1 was also achieved agaist BDE-28. The effect of temperature was more severe on soluble sugars (0.51), antioxidative machinery (-0.43), and osmoregulators (0.24). Cd exhibited a stronger inverse interrelation with the enzymatic antioxidant cascade. Application of KAR1 mitigated the deleterious effects of Cd and temperature stress on plant physiological parameters along with reduced aero-concentration factor, TF, and metal tolerance index. The phytohormone reduced lipid peroxidation by decreasing synthesis of ROS and persuading its breakdown. The stability of cellular membranes was perhaps due to the commotion of KAR1 as a growth-promoting phytohormone. In the same way, KAR1 supplementation augmented the membrane stability index, antioxidant defense factors, and removal efficiency of the pollutants. Consequently, the exogenously applied KAR1 can efficiently alleviate Cd stress, heat stress, and POP toxicity.


Asunto(s)
Brassica/fisiología , Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Antioxidantes/metabolismo , Brassica/metabolismo , Cadmio/metabolismo , Clorofila/metabolismo , Furanos , Germinación/efectos de los fármacos , Peroxidación de Lípido , Reguladores del Crecimiento de las Plantas/metabolismo , Bifenilos Polibrominados , Piranos
19.
Plant Physiol Biochem ; 158: 486-496, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33298367

RESUMEN

The continuous deterioration of arable lands by metal pollution compels finding suitable strategies to increase plant tolerance under contaminated regimes. Current study was designed to examine the synergistic role of Bacillus subtilis FBL-10 and silicon (Si) with respect to mitigation of lead (Pb) induced phytotoxicity in Solanum melongena L. Lead stress (75 mg kg-1) reduced chlorophyll (Chl) content, photosynthetic rate and gas exchange characteristics of S. melongena plants. The Si and B. subtilis FBL-10 individually upgraded all the above-mentioned growth attributes. However, co-application of Si (50 mg kg-1) and B. subtilis FBL-10 significantly improved biochemical and growth attributes of Pb challenged plants. The abridged levels of oxidative markers including hydrogen peroxide (H2O2), and malondialdehyde (MDA) besides reduced Pb accumulation in foliage tissues, were recorded in Si and microbe assisted plants. Furthermore, plants inoculated with B. subtilis FBL-10 alone or in combination with Si showed increment in total soluble proteins, photosynthetic rate and gas exchange attributes. The inoculated plants treated with Si exhibited higher level of auxins and improved activity of antioxidant enzymes under Pb stress. Present research elucidates interactive role of B. subtilis FBL-10 and Si in reduction of Pb toxicity in S. melongena plants. Alone application of Si or B. subtilis FBL-10 was less effective for attenuation of Pb stress; however, synergism between both phyto-protectants demonstrated fabulous ability for Pb stress assuagement. Consequently, executions of field studies become indispensable to comprehend the efficacy of Si applied alone or in combination with plant growth promoting bacteria (PGPB) like B. subtilis FBL-10. From current research, it is concluded that the interaction of Si and PGPB seems an auspicious technique and eco-friendly approach to enhance metal tolerance in crop plants.


Asunto(s)
Bacillus subtilis/fisiología , Plomo/toxicidad , Silicio , Solanum melongena/fisiología , Antioxidantes/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Silicio/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/microbiología
20.
Plants (Basel) ; 9(11)2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33171611

RESUMEN

Plant growth-promoting bacteria (PGPB) and putrescine (Put) have shown a promising role in the mitigation of abiotic stresses in plants. The present study was anticipated to elucidate the potential of Bacillus thuringiensis IAGS 199 and Put in mitigation of cadmium (Cd)-induced toxicity in Capsicum annum. Cadmium toxicity decreased growth, photosynthetic rate, gas exchange attributes and activity of antioxidant enzymes in C. annum seedlings. Moreover, higher levels of protein and non-protein bound thiols besides increased Cd contents were also observed in Cd-stressed plants. B. thuringiensis IAGS 199 and Put, alone or in combination, reduced electrolyte leakage (EL), hydrogen peroxide (H2O2) and malondialdehyde (MDA) level in treated plants. Synergistic effect of B. thuringiensis IAGS 199 and Put significantly enhanced the activity of stress-responsive enzymes including peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD). Furthermore, Put and microbial interaction enhanced the amount of proline, soluble sugars, and total soluble proteins in C. annum plants grown in Cd-contaminated soil. Data obtained during the current study advocates that application of B. thuringiensis IAGS 199 and Put establish a synergistic role in the mitigation of Cd-induced stress through modulating physiochemical features of C. annum plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...