Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trop Med Infect Dis ; 8(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37999620

RESUMEN

To map the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and evaluate immune response variations against this virus, it is essential to set up efficient serological tests locally. The SARS-CoV-2 immunogenic proteins were very expensive and not affordable for lower- middle-income countries (LMICs). For this purpose, the commonly used antigen, receptor-binding domain (RBD) of spike S1 protein (S1RBD), was produced using the baculovirus expression vector system (BEVS). In the current study, the expression of S1RBD was monitored using Western blot under different culture conditions. Different parameters were studied: the multiplicity of infection (MOI), cell density at infection, and harvest time. Hence, optimal conditions for efficient S1RBD production were identified: MOI 3; cell density at infection 2-3 × 106 cells/mL; and time post-infection (tPI or harvest time) of 72 h and 72-96 h, successively, for expression in shake flasks and a 7L bioreactor. A high production yield of S1RBD varying between 4 mg and 70 mg per liter of crude cell culture supernatant was achieved, respectively, in the shake flasks and 7L bioreactor. Moreover, the produced S1RBD showed an excellent antigenicity potential against COVID-19 (Wuhan strain) patient sera evaluated by Western blot. Thus, additional serological assays, such as in-house ELISA and seroprevalence studies based on the purified S1RDB, were developed.

2.
Biotechnol Rep (Amst) ; 35: e00736, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35646619

RESUMEN

The commonly used host for industrial production of recombinant proteins Pichia pastoris, has been used in this work to produce the rabies virus glycoprotein (RABV-G). To allow a constitutive expression and the secretion of the expressed recombinant RABV-G, the PichiaPink™ commercialized expression vectors were modified to contain the constitutive GAP promoter and the α secretion signal sequences. Recombinant PichiaPink™ strains co-expressing the RABV-G and the protein chaperone PDI, have been then generated and screened for the best producer clone. The influence of seven carbon sources on the expression of the RABV-G, has been studied under different culture conditions in shake flask culture. An incubation temperature of 30°C under an agitation rate of 250 rpm in a filling volume of 10:1 flask/culture volume ratio were the optimal conditions for the RABV-G production in shake flask for all screened carbon sources. A bioreactor Fed batch culture has been then carried using glycerol and glucose as they were good carbon sources for cell growth and RABV-G production in shake flask scale. Cells were grown on glycerol during the batch phase then fed with glycerol or glucose defined solutions, a final RABV-G concentration of 2.7 µg/l was obtained with a specific product yield (YP/X) of 0.032 and 0.06 µg/g(DCW) respectively. The use of semi-defined feeding solution enhanced the production and the YP/X to 12.9 µg/l and 0.135 µg/g(DCW) respectively. However, the high cell density favored by these carbon sources resulted in oxygen limitation which influenced the glycosylation pattern of the secreted RABV-G. Alternatively, the use of sucrose as substrate for RABV-G production in large scale culture, resulted in less biomass production and a YP/X of 0.310 µg/g(DCW) was obtained. A cation exchange chromatography was then used for RABV-G purification as one step method. The purified protein was correctly folded and glycosylated and able to adopt trimeric conformation. The knowledges gained through this work offer a valuable insight into the bioprocess design of RABV-G production in Pichia pastoris to obtain a correctly folded protein which can be used during an immunization proposal for subunit Rabies vaccine development.

3.
Prep Biochem Biotechnol ; 51(6): 562-569, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33095097

RESUMEN

Hepatitis E virus (HEV) is a nonenveloped virus causing an emerging zoonotic disease posing a severe threat to the public health in the world, especially to pregnant women. In this study, a truncated form (aa 368-606) of the open reading frame 2 of the capsid protein (tORF2-HEV), a major structural protein of HEV, was expressed in Escherichia coli. This work characterizes for the first time, the fused Glutathione-S-Transferase-tagged tORF2 (GST-tORF2) and tORF2-HEV forms in E. coli. The fusion protein was purified by affinity chromatography with a purity higher than 90% and to yield about 27% after thrombin digestion. The purified GST-tORF2 protein was then characterized by western blot, using anti-GST antibodies, and CD spectroscopy. The GST-tORF2 and tORF2-HEV proteins were shown to be efficient to develop an ELISA test to detect anti-HEV IgG in mice sera immunized with a recombinant full length ORF2 protein. Sera showed a significant increase of the absorbance signal at 450 nm, in plate wells coated with a quantity of 0.5, 1 and 2 µg of proteins. ELISA plates coated with the purified GST-tORF2 and tORF2-HEV showed similar response when compared to the HEV ELISA where total insect cell lysate, infected with the recombinant baculovirus expressing full ORF2, was used as positive control.


Asunto(s)
Proteínas de la Cápside , Virus de la Hepatitis E , Proteínas Recombinantes de Fusión , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Virus de la Hepatitis E/química , Virus de la Hepatitis E/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...