Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(18): 4809-4818, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705790

RESUMEN

Despite extensive research since 1996, there are still open questions regarding the primary location of the nucleation process, the growth mechanism of the nanoparticles (NPs), and the influence of the liquid properties on the ultimate size of the NPs for the magnetron sputtering of metals onto liquids. Hence, for the first time to the authors' knowledge, the particle size evolution is in situ and in real-time examined during and after the sputtering of the silver atoms onto silicone oil, i.e., Sputtering onto Liquids (SoL) process. The particle size distribution (PSD) is measured via the Light Extinction Spectroscopy (LES) technique, and the deposition rate and stirring speed effects on the PSDs are analyzed. Based on De Brouckere mean diameters, the size evolution of silver nanoparticles (Ag NPs) over time is monitored. Ag NPs bigger than 20 nm are detected, and the PSDs are shown to be poly-disperse, which is also supported by the ex situ TEM measurements and in situ time-resolved absorption spectra. Moreover, it is shown that aggregation and growth of Ag NPs occur both at the plasma-liquid interface and inside the silicone oil during and after the magnetron sputtering. Despite the same amount of deposited silver, the growth kinetics of Ag NPs in silicone oil vary at different deposition rates. In particular, at higher deposition rates, larger NPs are formed. Stirring is seen to help disaggregate the particle lumps. Faster stirring does not substantially influence the final size but promotes the formation of smaller NPs (<20 nm). Also, low colloidal stability of Ag NPs in silicone oil is observed.

2.
Langmuir ; 39(1): 12-19, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548220

RESUMEN

Splashing of a liquid droplet onto a substrate, while ubiquitous, sits at the intersection of several key fluid mechanical regions. Typically, this problem is often simplified to the transition between spreading and splashing, even for splashing on complex surfaces. Recently, there has been increased interest in using not just pure liquids but also nanofluids in applications such as spray cooling. While the addition of a few percent of nanoparticles to a Newtonian fluid does not change its apparent viscosity, the influence of the nanoparticles on the splashing transition is pronounced. We often view splashing in terms of fluid mechanics where a simple material is subjected to a complex flow and the fluid can be simply characterized by a Newtonian viscosity. For nanofluids, we have an apparently simple material in a complex flow, but the results show that the impact of the particles is nontrivial. This implies that we must now combine some of the insights we obtain from studying the rheological properties of nanosuspensions with this already complex problem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...