Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 19806-19818, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588323

RESUMEN

In this work, we introduced COFInformatics, a computational approach merging molecular simulations and machine learning (ML) algorithms, to evaluate all synthesized and hypothetical covalent organic frameworks (COFs) for the CO2/CH4 mixture separation under four different adsorption-based processes: pressure swing adsorption (PSA), vacuum swing adsorption (VSA), temperature swing adsorption (TSA), and pressure-temperature swing adsorption (PTSA). We first extracted structural, chemical, energy-based, and graph-based molecular fingerprint features of every single COF structure in the very large COF space, consisting of nearly 70,000 materials, and then performed grand canonical Monte Carlo simulations to calculate the CO2/CH4 mixture adsorption properties of 7540 COFs. These features and simulation results were used to develop ML models that accurately and rapidly predict CO2/CH4 mixture adsorption and separation properties of all 68,614 COFs. The most efficient separation process and the best adsorbent candidates among the entire COF spectrum were identified and analyzed in detail to reveal the most important molecular features that lead to high-performance adsorbents. Our results showed that (i) many hypoCOFs outperform synthesized COFs by achieving higher CO2/CH4 selectivities; (ii) the top COF adsorbents consist of narrow pores and linkers comprising aromatic, triazine, and halogen groups; and (iii) PTSA is the most efficient process to use COF adsorbents for natural gas purification. We believe that COFInformatics promises to expedite the evaluation of COF adsorbents for CO2/CH4 separation, thereby circumventing the extensive, time- and resource-intensive molecular simulations.

2.
J Chem Phys ; 160(8)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415834

RESUMEN

In this study, we used a high-throughput computational screening approach to examine the potential of metal-organic frameworks (MOFs) for capturing propane (C3H8) from different gas mixtures. We focused on Quantum MOF (QMOF) database composed of both synthesized and hypothetical MOFs and performed Grand Canonical Monte Carlo (GCMC) simulations to compute C3H8/N2/O2/Ar and C3H8/C2H6/CH4 mixture adsorption properties of MOFs. The separation of C3H8 from air mixture and the simultaneous separation of C3H8 and C2H6 from CH4 were studied for six different adsorption-based processes at various temperatures and pressures, including vacuum-swing adsorption (VSA), pressure-swing adsorption (PSA), vacuum-temperature swing adsorption (VTSA), and pressure-temperature swing adsorption (PTSA). The results of molecular simulations were used to evaluate the MOF adsorbents and the type of separation processes based on selectivity, working capacity, adsorbent performance score, and regenerability. Our results showed that VTSA is the most effective process since many MOFs offer high regenerability (>90%) combined with high C3H8 selectivity (>7 × 103) and high C2H6 + C3H8 selectivity (>100) for C3H8 capture from air and natural gas mixtures, respectively. Analysis of the top MOFs revealed that materials with narrow pores (<10 Å) and low porosities (<0.7), having aromatic ring linkers, alumina or zinc metal nodes, typically exhibit a superior C3H8 separation performance. The top MOFs were shown to outperform commercial zeolite, MFI for C3H8 capture from air, and several well-known MOFs for C3H8 capture from natural gas stream. These results will direct the experimental efforts to the most efficient C3H8 capture processes by providing key molecular insights into selecting the most useful adsorbents.

3.
Ind Eng Chem Res ; 63(1): 37-48, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38223500

RESUMEN

The existence of a very large number of porous materials is a great opportunity to develop innovative technologies for carbon dioxide (CO2) capture to address the climate change problem. On the other hand, identifying the most promising adsorbent and membrane candidates using iterative experimental testing and brute-force computer simulations is very challenging due to the enormous number and variety of porous materials. Artificial intelligence (AI) has recently been integrated into molecular modeling of porous materials, specifically metal-organic frameworks (MOFs), to accelerate the design and discovery of high-performing adsorbents and membranes for CO2 adsorption and separation. In this perspective, we highlight the pioneering works in which AI, molecular simulations, and experiments have been combined to produce exceptional MOFs and MOF-based composites that outperform traditional porous materials in CO2 capture. We outline the future directions by discussing the current opportunities and challenges in the field of harnessing experiments, theory, and AI for accelerated discovery of porous materials for CO2 capture.

4.
ACS Eng Au ; 3(6): 488-497, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38144678

RESUMEN

The design and discovery of novel porous materials that can efficiently capture volatile organic compounds (VOCs) from air are critical to address one of the most important challenges of our world, air pollution. In this work, we studied a recently introduced metal-organic framework (MOF) database, namely, quantum MOF (QMOF) database, to unlock the potential of both experimentally synthesized and hypothetically generated structures for adsorption-based n-butane (C4H10) capture from air. Configurational Bias Monte Carlo (CBMC) simulations were used to study the adsorption of a quaternary gas mixture of N2, O2, Ar, and C4H10 in QMOFs for two different processes, pressure swing adsorption (PSA) and vacuum-swing adsorption (VSA). Several adsorbent performance evaluation metrics, such as C4H10 selectivity, working capacity, the adsorbent performance score, and percent regenerability, were used to identify the best adsorbent candidates, which were then further studied by molecular simulations for C4H10 capture from a more realistic seven-component air mixture consisting of N2, O2, Ar, C4H10, C3H8, C3H6, and C2H6. Results showed that the top five QMOFs have C4H10 selectivities between 6.3 × 103 and 9 × 103 (3.8 × 103 and 5 × 103) at 1 bar (10 bar). Detailed analysis of the structure-performance relations showed that low/mediocre porosity (0.4-0.6) and narrow pore sizes (6-9 Å) of QMOFs lead to high C4H10 selectivities. Radial distribution function analyses of the top materials revealed that C4H10 molecules tend to confine close to the organic parts of MOFs. Our results provided the first information in the literature about the VOC capture potential of a large variety and number of MOFs, which will be useful to direct the experimental efforts to the most promising adsorbent materials for C4H10 capture from air.

5.
J Mater Chem A Mater ; 11(27): 14788-14799, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37441278

RESUMEN

A high-throughput computational screening approach combined with machine learning (ML) was introduced to unlock the potential of both synthesized and hypothetical COFs (hypoCOFs) for adsorption-based CH4/H2 separation. We studied 597 synthesized COFs for adsorption of a CH4/H2 mixture using Grand Canonical Monte Carlo (GCMC) simulations under pressure-swing adsorption (PSA) and vacuum-swing adsorption (VSA) conditions. Based on the simulation results, the CH4/H2 selectivities, CH4 working capacities, adsorbent performance scores, and regenerabilities of the synthesized COFs were assessed and the structural properties of the top-performing COFs were identified. The hypoCOF database composed of 69 840 materials was then filtered to identify 7737 hypothetical materials having similar structural properties to the top synthesized COFs. These hypothetical COFs were then examined for CH4/H2 separation using molecular simulations and the results showed that the top hypoCOFs have CH4 selectivities and working capacities in the ranges of 21.9-28.7 (64.7-128.6) and 5.8-7.6 (1.3-3.1) mol kg-1 under PSA (VSA) conditions, respectively, outperforming the synthesized COFs and metal-organic frameworks (MOFs). ML models were then developed based on the hypoCOF simulation results to accurately predict the CH4/H2 mixture adsorption properties of all remaining hypothetical materials when their structural and chemical properties are fed into the models. These models accurately assessed the CH4/H2 mixture separation performances of any hypoCOF within seconds without performing computationally demanding molecular simulations. The computational approach that we have proposed in this study will provide an accurate and efficient assessment of COF materials for CH4/H2 separation and significantly accelerate the experimental efforts towards the design and discovery of new high-performing COF adsorbents.

6.
Angew Chem Int Ed Engl ; 60(14): 7828-7837, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33443312

RESUMEN

Development of computation-ready metal-organic framework databases (MOF DBs) has accelerated high-throughput computational screening (HTCS) of materials to identify the best candidates for gas storage and separation. These DBs were constructed using structural curations to make MOFs directly usable for molecular simulations, which caused the same MOF to be reported with different structural features in different DBs. We examined thousands of common materials of the two recently updated, very widely used MOF DBs to reveal how structural discrepancies affect simulated CH4 , H2 , CO2 uptakes and CH4 /H2 separation performances of MOFs. Results showed that DB selection has a significant effect on the calculated gas uptakes and ideal selectivities of materials at low pressure. A detailed analysis on the curated structures was provided to isolate the critical elements of MOFs determining the gas uptakes. Identification of the top-performing materials for gas separation was shown to strongly depend on the DB used in simulations.

7.
J Phys Chem C Nanomater Interfaces ; 124(41): 22577-22590, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33133330

RESUMEN

Covalent organic frameworks (COFs) have high potential in gas separation technologies because of their porous structures, large surface areas, and good stabilities. The number of synthesized COFs already reached several hundreds, but only a handful of materials were tested as adsorbents and/or membranes. We used a high-throughput computational screening approach to uncover adsorption-based and membrane-based CO2/H2 separation potentials of 288 COFs, representing the highest number of experimentally synthesized COFs studied to date for precombustion CO2 capture. Grand canonical Monte Carlo (GCMC) simulations were performed to assess CO2/H2 mixture separation performances of COFs for five different cyclic adsorption processes: pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption (TSA), pressure-temperature swing adsorption (PTSA), and vacuum-temperature swing adsorption (VTSA). The results showed that many COFs outperform traditional zeolites in terms of CO2 selectivities and working capacities and PTSA is the best process leading to the highest adsorbent performance scores. Combining GCMC and molecular dynamics (MD) simulations, CO2 and H2 permeabilities and selectivities of COF membranes were calculated. The majority of COF membranes surpass Robeson's upper bound because of their higher H2 permeabilities compared to polymers, indicating that the usage of COFs has enormous potential to replace current materials in membrane-based H2/CO2 separation processes. Performance analysis based on the structural properties showed that COFs with narrow pores [the largest cavity diameter (LCD) < 15 Å] and low porosities (ϕ < 0.75) are the top adsorbents for selective separation of CO2 from H2, whereas materials with large pores (LCD > 20 Å) and high porosities (ϕ > 0.85) are generally the best COF membranes for selective separation of H2 from CO2. These results will help to speed up the engineering of new COFs with desired structural properties to achieve high-performance CO2/H2 separations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...