Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 24(2): 1773-80, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832555

RESUMEN

We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

2.
Small ; 5(10): 1162-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19235195

RESUMEN

The incorporation of carbon materials in micro- and nanoscale devices is being widely investigated due to the promise of enhanced functionality. Challenges in the positioning and addressability of carbon nanotubes provide the motivation for the development of new processes to produce nanoscale carbon materials. Here, the fabrication of conducting, nanometer-sized carbon structures using a combination of electron beam lithography (EBL) and carbonisation is reported. EBL is used to directly write predefined nanometer-sized patterns in a thin layer of negative resist in controllable locations. Careful heat treatment results in carbon nanostructures with the size, shape, and location originally defined by EBL. The pyrolysis process results in significant shrinkage of the structures in the vertical direction and minimal loss in the horizontal direction. Characterization of the carbonized material indicates a structure consisting of both amorphous and graphitized carbon with low levels of oxygen. The resistivity of the material is similar to other disordered carbon materials and the resistivity is maintained from the bulk to the nanoscale. This is demonstrated by fabricating a nanoscale structure with predictable resistance. The ability to fabricate these conductive structures with known dimensions and in predefined locations can be exploited for a number of applications. Their use as nanoband electrodes is also demonstrated.


Asunto(s)
Grafito/química , Nanoestructuras/química , Tamaño de la Partícula , Electroquímica , Electrones , Microscopía de Fuerza Atómica , Nanoestructuras/ultraestructura , Nanocables/química , Análisis Espectral , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA