Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12756, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882909

RESUMEN

Transition metal dichalcogenides (TMDs) receive significant attention due to their outstanding electronic and optical properties. In this study, we investigate the electronic, optical, and thermoelectric properties of single and few layer [Formula: see text] in detail utilizing first-principles methods based on the density functional theory (DFT). Within the scope of both PBE and HSE06 including spin orbit coupling (SOC), the simulations predict the electronic band gap values to decrease as the number of layers increases. Moreover, spin-polarized DFT calculations combined with the semi-classical Boltzmann transport theory are applied to estimate the anisotropic thermoelectric power factor (Seebeck coefficient, S) for [Formula: see text] in both the monolayer and multilayer limit, and S is obtained below the optimal value for practical applications. The optical absorbance of [Formula: see text] monolayer is obtained to be slightly less than the values reported in literature for 2H TMD monolayers of [Formula: see text], [Formula: see text], and [Formula: see text]. Furthermore, we simulate the impact of defects, such as vacancy, antisite and substitution defects, on the electronic, optical and thermoelectric properties of monolayer [Formula: see text]. Particularly, the Te-[Formula: see text] substitution defect in parallel orientation yields negative formation energy, indicating that the relevant defect may form spontaneously under relevant experimental conditions. We reveal that the electronic band structure of [Formula: see text] monolayer is significantly influenced by the presence of the considered defects. According to the calculated band gap values, a lowering of the conduction band minimum gives rise to metallic characteristics to the structure for the single Te(1) vacancy, a diagonal Te line defect, and the Te(1)-[Formula: see text] substitution, while the other investigated defects cause an opening of a small positive band gap at the Fermi level. Consequently, the real ([Formula: see text]) and imaginary ([Formula: see text]) parts of the dielectric constant at low frequencies are very sensitive to the applied defects, whereas we find that the absorbance (A) at optical frequencies is less significantly affected. We also predict that certain point defects can enhance the otherwise moderate value of S in pristine [Formula: see text] to values relevant for thermoelectric applications. The described [Formula: see text] monolayers, as functionalized with the considered defects, offer the possibility to be applied in optical, electronic, and thermoelectric devices.

2.
Phys Chem Chem Phys ; 23(10): 6107-6115, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33683236

RESUMEN

Transition metal boro-carbide (TM2BC) structures crystallize in the layered orthorhombic structure in their bulk phases. In this study, however, we find that TM2BC (TM = Cr, Mn) prefer a tetragonal (t) crystal structure in their monolayer phases due to the occurrence of strong sp2 bonds between the metal and B/C atoms instead of sp3 + sp2 bonds which exist in the orthorhombic phase. The calculated energy difference between the orthorhombic and the tetragonal structures based on density functional theory (DFT) is more than 1 eV per unit cell. In addition, t-Cr2BC and t-Mn2BC monolayers are dynamically and thermally stable with their magnetic metal electronic structures. For further investigations, we combine our DFT calculations with the Monte Carlo simulations and find that both t-TM2BC monolayers show ferromagnetic properties. The calculated Curie temperatures are 846 K and 128 K for t-Cr2BC and t-MnBC sheets, respectively. In addition, we examine the magnetic anisotropy energies (MAE) of t-TM2BC monolayers and find that both structures prefer out-of-plane as the easy axis magnetization direction and the applied electric field can easily modulate the MAE of the monolayers. Our theoretical calculations reveal that t-TM2BC (TM = Cr, Mn) sheets have great potential for the future design of controllable spintronic devices with their tunable MAE properties.

3.
Phys Chem Chem Phys ; 22(8): 4561-4573, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32048686

RESUMEN

Atomistic exploration and electronic modification of 2D materials have been a central focus of research since the breakthrough of graphene. In the present study, we introduce and reveal the structure, stability and electronic features of novel RhX3 (X: Cl, Br, I) monolayer systems within the framework of density functional theory. Phonon dispersion spectra and equilibrium molecular dynamics calculations confirm the stability of the phases studied at room and elevated temperatures. The structures are slightly modified because of thermal excitations and maintain their stabilities up to 1000 K. We show that the electronic and magnetic nature of pristine monolayers can be tuned by external effects, i.e. both mechanically and electrically. RhCl3, RhBr3 and RhI3 monolayers are nonmagnetic and indirect-gap semiconductors intrinsically, but display indirect-to-direct band gap transitions at particular strain values. The systems gain a net magnetic moment and are transformed into metals by negative charging. The optical properties, such as the absorption coefficient, optical conductivity, energy loss spectrum, refractive index and extinction coefficient, are also presented. This interesting class of nanomaterials are promising candidates for several applications in nanotechnology and optoelectronics with good thermal stability, mechanical flexibility, and tunable electronic properties.

4.
Phys Chem Chem Phys ; 20(23): 16077-16091, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29855032

RESUMEN

We investigated the effects of chemical/substitutional doping, hydrogenation, and anti-site and vacancy defects on the atomic, optoelectronic and magnetic properties of AlN and GaN monolayers. Upon doping of selected atoms, AlN and GaN monolayers can acquire magnetic properties, and their fundamental band gaps are modified by the localized gap states. Spin-polarized gap states broaden into bands at patterned coverage of adatoms, whereby half-metallic or magnetic semiconducting properties can be attained. Specific adatoms adsorbed to Ga atoms break the nearest vertical Ga-N bonds in the GaN bilayer in the heackelite structure and result in changes in the electronic and atomic structure. While adjacent and distant pairs of anion + cation vacancies induce spin polarization with filled and empty gap states, anti-site defects remain nonmagnetic; but both defects induce dramatic changes in the band gap. Fully hydrogenated monolayers are stable only for specific buckled geometries, where one geometry can also lead to an indirect to direct band gap transition. Also, optical activity shifts to the ultra-violet region upon hydrogenation of the monolayers. While H2 and O2 molecules are readily physisorbed on the surfaces of the monolayers with weak van der Waals attraction, they can be dissociated into constituent atoms at the vacancy site of the cation. Our study performed within density functional theory shows that the electronic, magnetic and optical properties of AlN and GaN monolayers can be tuned by doping and point defect formation in order to acquire diverse functionalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...