Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36557997

RESUMEN

Plant-derived flavonoids are considered natural nontoxic chemo-preventers and have been widely studied for cancer treatment in recent decades. Mostly all flavonoid compounds show significant anti-inflammatory, anticancer and antioxidant properties. Kaempferol (Kmp) is a well-studied compound and exhibits remarkable anticancer and antioxidant potential. Kmp can regulate various cancer-related processes and activities such as cell cycle, oxidative stress, apoptosis, proliferation, metastasis, and angiogenesis. The anti-cancer properties of Kmp primarily occur via modulation of apoptosis, MAPK/ERK1/2, P13K/Akt/mTOR, vascular endothelial growth factor (VEGF) signalling pathways. The anti-cancer property of Kmp has been recognized in several in-vivo and in-vitro studies which also includes numerous cell lines and animal models. This flavonoid possesses toxic activities against only cancer cells and have restricted toxicity on healthy cells. In this review, we present extensive research investigations about the therapeutic potential of Kmp in the management of different types of cancers. The anti-cancer properties of Kmp are discussed by concentration on its capability to target molecular-signalling pathway such as VEGF, STAT, p53, NF-κB and PI3K-AKT signalling pathways. The anti-cancer property of Kmf has gained a lot of attention, but the accurate action mechanism remains unclear. However, this natural compound has a great pharmacological capability and is now considered to be an alternative cancer treatment.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Animales , Factor A de Crecimiento Endotelial Vascular/farmacología , Quempferoles/farmacología , Quempferoles/uso terapéutico , Antioxidantes/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Neoplasias/tratamiento farmacológico , Flavonoides , Apoptosis
2.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296520

RESUMEN

Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Tiosemicarbazonas , Inhibidores de Glicósido Hidrolasas/química , alfa-Amilasas , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Acarbosa , Tiosemicarbazonas/farmacología , Relación Estructura-Actividad , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Bencimidazoles/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...