Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 37(11): 1288-1296, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28677847

RESUMEN

Graphene-based nanomaterials have received significant attention in the last decade due to their interesting properties. Its electrical and thermal conductivity and strength make graphene well suited for a variety of applications, particularly for use as a composite material in plastics. Furthermore, much work is taking place to utilize graphene as a biomaterial for uses such as drug delivery and tissue regeneration scaffolds. Owing to the rapid progress of graphene and its potential in many marketplaces, the potential toxicity of these materials has garnered attention. Graphene, while simple in its purest form, can have many different chemical and physical properties. In this paper, we describe our toxicity evaluation of pristine graphene and a functionalized graphene sample that has been oxidized for enhanced hydrophilicity, which was synthesized from the pristine sample. The samples were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, thermogravimetric analysis, zeta-potential, atomic force microscopy and electron microscopy. We discuss the disagreement between the size of imaged samples analyzed by atomic force microscopy and by transmission electron microscopy. Furthermore, the samples each exhibit quite different surface chemistry and structure, which directly affects their interaction with aqueous environments and is important to consider when evaluating the toxicity of materials both in vitro and in vivo. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Fulerenos/toxicidad , Grafito/toxicidad , Nanopartículas/toxicidad , Animales , Fulerenos/química , Grafito/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Oxidación-Reducción , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Medición de Riesgo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Relación Estructura-Actividad , Propiedades de Superficie , Termogravimetría , Pruebas de Toxicidad
2.
J Appl Toxicol ; 37(11): 1346-1353, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28485473

RESUMEN

We report on a measurement technique that quantifies the adhesive force between multi-layers of graphene flakes and the cell wall of live Escherichia coli cells using atomic force microscopy (AFM) in-fluid Peak Force- Quantitative Nanomechanical Mapping mode. To measure the adhesive force, we made use of the negative charge of E. coli cells to allow them to stick to positively charged surfaces, such as glass or silicon, that were covered by poly-L-Lysine. With this approach, cells were held in place for AFM characterization. Both pristine graphene (PG) flakes and functionalized graphene (FG) flakes were put on the E. coli cells and measurements of lateral size, flake thickness, and adhesion were made. Using this approach, the measured values of the adhesive force between multi-layers of graphene flakes (total thickness of 50 nm) and E. coli was determined to be equal or greater than 431 ± 65pN for (PG) and 694 ± 98pN for the (FG). More interestingly, the adhesive force of a graphene flake (thickness 1.3 nm) with the cell is determined to be equal or greater than 38.2 ± 16.4pN for the (PG) and 34.8 ± 15.3pN for the (FG). These interaction values can play an important role in determining and understanding the possible toxicity of graphene flakes. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Pared Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Grafito/farmacología , Nanopartículas , Adhesividad , Pared Celular/química , Escherichia coli/química , Grafito/química , Microscopía de Fuerza Atómica , Estructura Molecular , Silicio/química , Relación Estructura-Actividad , Propiedades de Superficie
3.
Biophys Chem ; 184: 126-30, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24075493

RESUMEN

The pore-forming toxin lysenin self-inserts to form conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels exhibit voltage regulation and hysteresis of the macroscopic current during the application of positive periodic voltage stimuli. We explored the bi-stable behavior of lysenin channels and present a theoretical approach for the mechanism of the hysteresis to explain its static and dynamic components. This investigation develops a model to incorporate the role of charge accumulation on the bilayer lipid membrane in influencing the channel conduction state. Our model is supported by experimental results and also provides insight into the temperature dependence of lysenin channel hysteresis. Through this work we gain perspective into the mechanism of how the response of a channel protein is determined by previous stimuli.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/metabolismo , Modelos Biológicos , Toxinas Biológicas/metabolismo , Canales Iónicos/química , Membrana Dobles de Lípidos/metabolismo , Temperatura , Toxinas Biológicas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...