Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38786109

RESUMEN

Antimicrobial resistance (AMR) is one of the major global health and economic threats. There is growing concern about the emergence of AMR in food and the possibility of transmission of microorganisms possessing antibiotic resistance genes (ARGs) to the human gut microbiome. Shotgun sequencing and in vitro antimicrobial susceptibility testing were used in this study to provide a detailed characterization of the antibiotic resistance profile of bacteria and their ARGs in dromedary camel milk. Eight pooled camel milk samples, representative of multiple camels distributed in the Kuwait desert, were collected from retail stores and analyzed. The genotypic analysis showed the presence of ARGs that mediate resistance to 18 classes of antibiotics in camel milk, with the highest resistance to fluoroquinolones (12.48%) and disinfecting agents and antiseptics (9%). Furthermore, the results pointed out the possible transmission of the ARGs to other bacteria through mobile genetic elements. The in vitro antimicrobial susceptibility testing indicated that 80% of the isolates were resistant to different classes of antibiotics, with the highest resistance observed against three antibiotic classes: penicillin, tetracyclines, and carbapenems. Multidrug-resistant pathogens including Klebsiella pneumoniae, Escherichia coli, and Enterobacter hormaechei were also revealed. These findings emphasize the human health risks related to the handling and consumption of raw camel milk and highlight the necessity of improving the hygienic practices of farms and retail stores to control the prevalence of ARGs and their transmission.

2.
Data Brief ; 48: 109151, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37128584

RESUMEN

Food contamination by pathogens results in serious health problems and economic losses. Chemical food preservatives pose a risk to human health when used in food preservation. To increase the shelf life of the products and prevent spoilage, the dairy sector is considering natural preservatives such the ribosomally synthesized peptides, bacteriocins. Here we present the draft genome sequence of Enterococcus faecium strain R9 producing three bacteriocins isolated from raw camel milk. These bacteriocins showed valuable technological properties, such as sensitivity to proteolytic enzymes, heat stability, and wide range of pH tolerance. The 2 × 250 bp paired end reads sequencing was performed on Illumina HiSeq 2500 sequencing. The genome sequence consisted of 3,598,862 bases, with a GC content of 37.94% bases. The number of raw reads was 4,670,510, and the assembly N50 score was 65,355 bp with a 310.28 average coverage. A total of 3,086 coding sequences (CDSs) was predicted with 2,126 CDSs with a known function and 127 with a signal peptide. Annotation of the genome sequence revealed bacteriocins encoding genes, namely, enterocin B, enterocin P, and two-component enterocin X (X-alfa and X-beta subunits). These enterocins are beneficial for controlling Listeria monocytogenes in the food industry. Genome sequence of Enterococcus faecium R9 has been deposited at the gene bank under BioSample accession number JALJED000000000 and are available in Mendeley Data [1].

3.
Data Brief ; 43: 108434, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35859785

RESUMEN

The data in this article was generated by high throughput sequencing of moderately hydrocarbon polluted sites (S1 and S2) and a heavily polluted site (S3) in Kuwait. Deoxyribonucleic acid (DNA) extracted from each site was subjected to polymerase chain reaction (PCR) amplification employing conserved primers of 16S rRNA and alkB genes. Unique Molecular Identifiers (MID) tags were added to individual samples prior to pooling and sequencing on a Roche GS FLX platform using Pyrosequencing Titanium Chemistry. Raw sff files were deposited to the public repository of National Centre for Biotechnology Information (NCBI) under accession no PRJNA816075. The sff files were clipped according to the MID tags and converted to fasta format. 16S rRNA gene sequences were aligned against the SILVA database. The predominant genera at S1 and S2 was Alkanindiges whereas Alcanivorax, was highly abundant at S3. Alkanindiges have been found to play a key role in hydrocarbon degradation and Alcanivorax genus is known for its hydrocarbon degrading capability. The alk B gene sequences were subjected to blastx. The diversity of alkB gene was higher in S3 as compared to S1 and S2. These findings may open the way to the use of the genera Alkanindiges and Alcanivorax in the rehabilitation of hydrocarbon-contaminated sites in hot, arid climates. The isolation of these microorganisms and the design of bioaugmentation procedures specific to the dry climate could be a key step towards the restoration of hydrocarbon contaminated soils.

4.
PLoS One ; 16(4): e0250645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33901235

RESUMEN

The microbial communities play a crucial role in ecosystem functioning through interactions among individuals and taxonomic groups in a highly dynamic marine ecosystem. The structure and functioning of the microbial communities are often influenced by the changes in the surrounding environment. Monitoring the microbial diversity of the marine ecosystem helps to understand spatial patterns of microbial community and changes due to season, climate, and various drivers of biological diversity. Kuwait is characterized by an arid environment with a high degree of temperature variation during summer and winter. Our understanding of spatial distribution patterns of microbial communities, their diversity, and the influence of human activities on the degree of changes in the diversity of the microbial community in Kuwait territorial waters remain unclear. In this study, we employed 18S rRNA sequencing to explore marine microalgal community composition and dynamics in seawater samples collected from Kuwait waters over two seasonal cycles across six locations. A total of 448,184 sequences across 36 replicates corresponding to 12 samples from six stations were obtained. The quality-filtered sequences were clustered into 1,293 representative sequences, which were then classified into different eukaryotic taxa. This study reveals that the phytoplankton community in Kuwait waters is diverse and shows significant variations among different taxa during summer and winter. Dinoflagellates and diatoms were the most abundant season-dependent microalgae taxa in Kuwait waters. Alexandrium and Pyrophacus were abundant in summer, whereas Gonyaulax was abundant during the winter. The abundance of Coscinodiscus and Navicula, of the diatom genera, were also dependent upon both seasonal and possible anthropogenic factors. Our results demonstrate the effectiveness of a sequencing-based approach, which could be used to improve the accuracy of quantitative eukaryotic microbial community profiles.


Asunto(s)
Microalgas/crecimiento & desarrollo , ARN Ribosómico 18S/metabolismo , Biodiversidad , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Kuwait , Microalgas/genética , Análisis de Componente Principal , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , Estaciones del Año , Agua de Mar , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA