Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiother Oncol ; 183: 109629, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36934895

RESUMEN

Multiple outcome prediction models have been developed for Head and Neck Squamous Cell Carcinoma (HNSCC). This systematic review aimed to identify HNSCC outcome prediction model studies, assess their methodological quality and identify those with potential utility for clinical practice. Inclusion criteria were mucosal HNSCC prognostic prediction model studies (development or validation) incorporating clinically available variables accessible at time of treatment decision making and predicting tumour-related outcomes. Eligible publications were identified from PubMed and Embase. Methodological quality and risk of bias were assessed using the checklist for critical appraisal and data extraction for systematic reviews of prediction modelling studies (CHARMS) and prediction model risk of bias assessment tool (PROBAST). Eligible publications were categorised by study type for reporting. 64 eligible publications were identified; 55 reported model development, 37 external validations, with 28 reporting both. CHARMS checklist items relating to participants, predictors, outcomes, handling of missing data, and some model development and evaluation procedures were generally well-reported. Less well-reported were measures accounting for model overfitting and model performance measures, especially model calibration. Full model information was poorly reported (3/55 model developments), specifically model intercept, baseline survival or full model code. Most publications (54/55 model developments, 28/37 external validations) were found to have high risk of bias, predominantly due to methodological issues in the PROBAST analysis domain. The identified methodological issues may affect prediction model accuracy in heterogeneous populations. Independent external validation studies in the local population and demonstration of clinical impact are essential for the clinical implementation of outcome prediction models.


Asunto(s)
Neoplasias de Cabeza y Cuello , Evaluación de Resultado en la Atención de Salud , Humanos , Sesgo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello
2.
Cancers (Basel) ; 15(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36765523

RESUMEN

In progressing the use of big data in health systems, standardised nomenclature is required to enable data pooling and analyses. In many radiotherapy planning systems and their data archives, target volumes (TV) and organ-at-risk (OAR) structure nomenclature has not been standardised. Machine learning (ML) has been utilised to standardise volumes nomenclature in retrospective datasets. However, only subsets of the structures have been targeted. Within this paper, we proposed a new approach for standardising all the structures nomenclature by using multi-modal artificial neural networks. A cohort consisting of 1613 breast cancer patients treated with radiotherapy was identified from Liverpool & Macarthur Cancer Therapy Centres, NSW, Australia. Four types of volume characteristics were generated to represent each target and OAR volume: textual features, geometric features, dosimetry features, and imaging data. Five datasets were created from the original cohort, the first four represented different subsets of volumes and the last one represented the whole list of volumes. For each dataset, 15 sets of combinations of features were generated to investigate the effect of using different characteristics on the standardisation performance. The best model reported 99.416% classification accuracy over the hold-out sample when used to standardise all the nomenclatures in a breast cancer radiotherapy plan into 21 classes. Our results showed that ML based automation methods can be used for standardising naming conventions in a radiotherapy plan taking into consideration the inclusion of multiple modalities to better represent each volume.

3.
Microb Genom ; 8(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36136078

RESUMEN

Infection triggers a dynamic cascade of reciprocal events between host and pathogen wherein the host activates complex mechanisms to recognise and kill pathogens while the pathogen often adjusts its virulence and fitness to avoid eradication by the host. The interaction between the pathogen and the host results in large-scale changes in gene expression in both organisms. Dual RNA-seq, the simultaneous detection of host and pathogen transcripts, has become a leading approach to unravelling complex molecular interactions between the host and the pathogen and is particularly informative for intracellular organisms. The amount of in vitro and in vivo dual RNA-seq data is rapidly growing, which demands computational pipelines to effectively analyse such data. In particular, holistic, systems-level, and temporal analyses of dual RNA-seq data are essential to enable further insights into the host-pathogen transcriptional dynamics and potential interactions. Here, we developed an integrative network-driven bioinformatics pipeline, dRNASb, a systems biology-based computational pipeline to analyse temporal transcriptional clusters, incorporate molecular interaction networks (e.g. protein-protein interactions), identify topologically and functionally key transcripts in host and pathogen, and associate host and pathogen temporal transcriptome to decipher potential between-species interactions. The pipeline is applicable to various dual RNA-seq data from different species and experimental conditions. As a case study, we applied dRNASb to analyse temporal dual RNA-seq data of Salmonella-infected human cells, which enabled us to uncover genes contributing to the infection process and their potential functions and to identify putative associations between host and pathogen genes during infection. Overall, dRNASb has the potential to identify key genes involved in bacterial growth or host defence mechanisms for future uses as therapeutic targets.


Asunto(s)
Interacciones Huésped-Patógeno , Biología de Sistemas , Interacciones Huésped-Patógeno/genética , Humanos , RNA-Seq , Transcriptoma , Virulencia/genética
4.
Transl Vis Sci Technol ; 10(7): 9, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34110385

RESUMEN

Purpose: Artificial intelligence (AI) techniques are increasingly being used to classify retinal diseases. In this study we investigated the ability of a convolutional neural network (CNN) in categorizing histological images into different classes of retinal degeneration. Methods: Images were obtained from a chemically induced feline model of monocular retinal dystrophy and split into training and testing sets. The training set was graded for the level of retinal degeneration and used to train various CNN architectures. The testing set was evaluated through the best architecture and graded by six observers. Comparisons between model and observer classifications, and interobserver variability were measured. Finally, the effects of using less training images or images containing half the presentable context were investigated. Results: The best model gave weighted-F1 scores in the range 85% to 90%. Cohen kappa scores reached up to 0.86, indicating high agreement between the model and observers. Interobserver variability was consistent with the model-observer variability in the model's ability to match predictions with the observers. Image context restriction resulted in model performance reduction by up to 6% and at least one training set size resulted in a model performance reduction of 10% compared to the original size. Conclusions: Detecting the presence and severity of up to three classes of retinal degeneration in histological data can be reliably achieved with a deep learning classifier. Translational Relevance: This work lays the foundations for future AI models which could aid in the evaluation of more intricate changes occurring in retinal degeneration, particularly in other types of clinically derived image data.


Asunto(s)
Aprendizaje Profundo , Degeneración Retiniana , Animales , Inteligencia Artificial , Gatos , Redes Neurales de la Computación , Degeneración Retiniana/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...