Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hand (N Y) ; : 15589447241238372, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38525794

RESUMEN

Background: Increased utilization of artificial intelligence (AI)-driven search and large language models by the lay and medical community requires us to evaluate the accuracy of AI responses to common hand surgery questions. We hypothesized that the answers to most hand surgery questions posed to an AI large language model would be correct. Methods: Using the topics covered in Green's Operative Hand Surgery 8th Edition as a guide, 56 hand surgery questions were compiled and posed to ChatGPT (OpenAI, San Francisco, CA). Two attending hand surgeons then independently reviewed ChatGPT's answers for response accuracy, completeness, and usefulness. A Cohen's kappa analysis was performed to assess interrater agreement. Results: An average of 45 of the 56 questions posed to ChatGPT were deemed correct (80%), 39 responses were deemed useful (70%), and 32 responses were deemed complete (57%) by the reviewers. Kappa analysis demonstrated "fair to moderate" agreement between the two raters. Reviewers disagreed on 11 questions regarding correctness, 16 questions regarding usefulness, and 19 questions regarding completeness. Conclusions: Large language models have the potential to both positively and negatively impact patient perceptions and guide referral patterns based on the accuracy, completeness, and usefulness of their responses. While most responses fit these criteria, more precise responses are needed to ensure patient safety and avoid misinformation. Individual hand surgeons and surgical societies must understand these technologies and interface with the companies developing them to provide our patients with the best possible care.

2.
Am J Med Genet A ; 191(8): 2113-2131, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377026

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Factores de Transcripción/genética , Proteínas de Ciclo Celular/genética , Fenotipo , Mutación , Genómica , Estudios de Asociación Genética , Factores de Elongación Transcripcional/genética , Histona Desacetilasas/genética , Proteínas Represoras/genética
3.
Hum Mol Genet ; 31(8): 1293-1307, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-34726235

RESUMEN

Spinal muscular atrophy with respiratory distress type I (SMARD1) is a neurodegenerative disease defined by respiratory distress, muscle atrophy and sensory and autonomic nervous system defects. SMARD1 is a result of mutations within the IGHMBP2 gene. We have generated six Ighmbp2 mouse models based on patient-derived mutations that result in SMARD1 and/or Charcot-Marie Tooth Type 2 (CMT2S). Here we describe the characterization of one of these models, Ighmbp2D564N (human D565N). The Ighmbp2D564N/D564N mouse model mimics important aspects of the SMARD1 disease phenotype, including motor neuron degeneration and muscle atrophy. Ighmbp2D564N/D564N is the first SMARD1 mouse model to demonstrate respiratory defects based on quantified plethysmography analyses. SMARD1 disease phenotypes, including the respiratory defects, are significantly diminished by intracerebroventricular (ICV) injection of ssAAV9-IGHMBP2 and the extent of phenotypic restoration is dose-dependent. Collectively, this model provides important biological insight into SMARD1 disease development.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neurodegenerativas , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Atrofia Muscular , Atrofia Muscular Espinal/genética , Mutación , Síndrome de Dificultad Respiratoria del Recién Nacido , Factores de Transcripción/genética
4.
Mol Ther Methods Clin Dev ; 23: 23-32, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34553000

RESUMEN

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disorder that develops in infancy and arises from mutation of the immunoglobulin helicase µ-binding protein 2 (IGHMBP2) gene. Whereas IGHMBP2 is ubiquitously expressed, loss or reduction of function leads to alpha motor neuron loss and skeletal muscle atrophy. We previously developed a gene therapy strategy for SMARD1 using a single-stranded AAV9-IGHMBP2 vector and compared two different delivery methods in a validated SMARD1 mouse model. An important question in the field relates to the temporal requirements for this or any potential treatment. To examine the therapeutic window, we utilized our recently developed SMARD1 model, FVB/NJ-Ighmpb2 nmd-2J , to deliver AAV9-IGHMBP2 at four different time points starting at post-natal day 2 (P2) through P8. At each time point, significant improvements were observed in survival, weight gain, and motor function. Similarly, treatment improved important hallmarks of disease, including motor unit pathology. Whereas improvements were more pronounced in the early-treatment groups, even the later-treatment groups displayed significant phenotypic improvements. This work suggests that an effective gene therapy strategy could provide benefits to pre-symptomatic and early-symptomatic individuals, thereby expanding the potential therapeutic window for SMARD1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...