Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(14): 20530-20541, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34739670

RESUMEN

The co-occurrence of heavy metals, antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) from hospital effluents spreading into the river receiving systems and evaluating associated risks are topics of scientific interest and still under-studied in developing countries under tropical conditions. To understand the selectors of the ARGs, we examined the occurrence of heavy metals (Cr, Co, Ni, Cu, Cd, Pb and Zn), associated ARB (ß-lactam-resistant Escherichia coli, ß-lactam-resistant Enterobacteriaceae, and carbapenem-resistant Enterobacteriaceae) and ARGs (blaOXA, blaCTX-M, blaIMP, blaTEM) in water and sediments from two sub-urban rivers receiving urban and hospital effluent waters in the Democratic Republic of the Congo (DRC). High abundances of ARB and ARGs were observed in all sediment samples. All the metal contents correlated negatively with grain size (- 0.94 ≤ r ≤ - 0.54, p < 0.05) except for Ni and positively with organic matter content and total copies of 16 s rRNA (0.42 ≤ r ≤ 0.79, p < 0.05), except for Ni and Zn. The metals had a significant positive correlation with the faecal indicator Enterococcus except for Ni and Cd (0.43 ≤ r ≤ 0.67, p < 0.05). Carbapenem-resistant Enterobacteriaceae correlated negatively with Zn (r = - 0.44, p < 0.05) and positively with all the rest of toxic metals (0.58 ≤ r ≤ 1.0, p < 0.05). These results suggested that some metals had a great influence on the persistence of ARB and ARGs in sediments. Overall, this study strongly recommends the managing urban wastewater to preserve water resources used for human and agricultural purposes. Additionally, we recommend the utilizing biological indicators (faecal indicator bacteria, ARB, ARGs) when investigating urban wastewater pollutions.


Asunto(s)
Metales Pesados , Ríos , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/análisis , Antibacterianos/farmacología , Bacterias/genética , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/microbiología , Humanos , Metales Pesados/análisis , Ríos/microbiología , Clima Tropical , Aguas Residuales/análisis
2.
Sci Total Environ ; 754: 142175, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920409

RESUMEN

The contamination of water resource and food chain by persistent organic pollutants (POPs) constitutes a major environmental and human health concern worldwide. The aim of this study was to investigate the levels of POPs in irrigation water, soil and in Amaranthus viridis (A. viridis) from different gardening sites in Kinshasa to evaluate the potential environmental and human health risks. A survey study for the use of pesticides and fertilizers was carried out with 740 market gardeners. The levels of POPs (including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs)) were analyzed in irrigation water and 144 vegetable samples collected from different gardening sites. The assessment of potential human health risk was estimated by calculating daily intake and toxic equivalency to quantify the carcinogenicity. The results show highest PAH levels in A. viridis from all studied sites. The concentrations of the sum of seven PCBs (Σ7PCBS) congeners in analyzed plants ranged between 15.89 and 401.36 ng g-1. The distributions of OCPs in both water and A. viridis were congener specific, chlorpyrifos-ethyl and p,p'-DDE were predominantly detected. Among PBDEs, only BDE47 was quantified with noticeable concentration in A. viridis, while no PBDEs were detected in irrigation water. Higher estimated daily intake values indicate that consuming leafy vegetables might associate with increased human health risks. However, calculated incremental lifetime cancer risk values indicates no potential carcinogenic risk for the local population. The results of this study provide important information on A. viridis contamination by POPs and strongly recommend implementing the appropriate measures to control the use of chemicals used in studied gardening areas. Thus in Kinshasa, urban agriculture control programs for POPs and fertilizers is very important in order to protect the public health through direct and dietary exposure pathways.


Asunto(s)
Amaranthus , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , República Democrática del Congo , Monitoreo del Ambiente , Éteres Difenilos Halogenados/análisis , Humanos , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Medición de Riesgo
3.
Sci Total Environ ; 727: 138129, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32498199

RESUMEN

The occurrence and dissemination of toxic metals, antibiotic resistant bacteria and their resistance genes (ARGs) in the aquatic ecosystems of sub-Saharan African countries are still understudied, despite their potential to threat human health and aquatic organisms. In this context, the co-contamination and seasonal distribution of toxic metals and ARG in river sediments receiving untreated urban sewages and hospital effluents from Kinshasa, the capital city of the Democratic Republic of the Congo were investigated. ARGs including ß-lactam resistance (blaCTX-M and blaSHV), carbapenem resistance (blaVIM, blaIMP, blaKPC, blaOXA-48 and blaNDM) and total bacterial load were quantified by using quantitative polymerase chain reaction (qPCR) in total DNA extracted from sediment. The amount of toxic metals in sediments was quantified using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results highlight high abundance of 16S rRNA and ARGs copy numbers in sediment samples. Strong pollution of rivers by toxic metals was found, with max values (mg kg-1) of 81.85(Cr), 5.09(Co), 33.84(Ni), 203.46 (Cu), 1055.92(Zn), 324.24(Pb) and 2.96(Hg). Results also highlight the high abundance of bacterial markers (8.06 × 109-2.42 × 1012 16S rRNA/g-1 DS) as well as antibiotic resistance genes (up to 4.58 × 108 ARG. g-1 DS) in the studied rivers. Significant correlations were observed between (i) metals (except Cd and Hg) and organic matter (R > 0.60, p < 0.05); and (ii) ARGs (except blaNDM) and 16S rRNA (R > 0.57, p < 0.05) suggesting a tight link between (i) metal contamination and anthropogenic pressure and (ii) microbial contamination of river and dissemination of antibiotic resistance. Results demonstrated that multi-diffuse pollution originating from human activity contribute to the spread of toxic metals and ARGs into the aquatic ecosystems.


Asunto(s)
Ríos , Carbapenémicos , Ciudades , República Democrática del Congo , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Metales , ARN Ribosómico 16S , Contaminantes Químicos del Agua , beta-Lactamasas
4.
Ecotoxicol Environ Saf ; 200: 110767, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470679

RESUMEN

The occurrence and dissemination of antibiotic resistant genes (ARGs) that are associated with clinical pathogens and the evaluation of associated risks are still under-investigated in developing countries under tropical conditions. In this context, cultivable and molecular approaches were performed to assess the dissemination of bacteria and the antibiotic resistance genes in aquatic environment in Kinshasa, Democratic Republic of the Congo. Cultivable approach quantified ß-lactam, carbapenem resistant, and total Escherichia coli and Enterobacteriaceae in river sediments and surface waters that receive raw hospital effluents. The molecular approach utilized Quantitative Polymerase Chain Reaction (qPCR) to quantify the total bacteria and the richness of relevant bacteria (Escherichia coli, Enterococcus, and Pseudomonas), and antibiotic resistance genes (ARGs: blaOXA-48, blaCTX-M, blaIMP, blaTEM) in sediment samples. Statistical analysis were employed to highlight the significance of hospital contribution and seasonal variation of bacteria and ARGs into aquatic ecosystems in suburban municipalities of Kinshasa, Democratic Republic of the Congo. The contribution of hospitals to antibiotic resistance proliferation is higher in the dry season than during the wet season (p < 0.05). Hospital similarly contributed Escherichia coli, Enterococcus, and Pseudomonas and ARGs significantly to the sediments in both seasons (p < 0.05). The organic matter content correlated positively with E. coli (r = 0.50, p < 0.05). The total bacterial load correlated with Enterococcus, and Pseudomonas (0.49 < r < 0.69, p < 0.05). Each ARG correlated with the total bacterial load or at least one relevant bacteria (0.41 < r < 0.81, p < 0.05). Our findings confirm that hospital wastewaters contributed significantly to antibiotic resistance profile and the significance of this contribution increased in the dry season. Moreover, our analysis highlights this risk from untreated hospital wastewaters in developing countries, which presents a great threat to public health.


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos/efectos de los fármacos , Hospitales , Ríos/microbiología , Aguas Residuales/microbiología , Antibacterianos/análisis , Antibacterianos/farmacología , Ciudades , República Democrática del Congo , Ecosistema , Enterococcus/efectos de los fármacos , Enterococcus/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Pseudomonas/efectos de los fármacos , Pseudomonas/genética , Ríos/química , Clima Tropical , Aguas Residuales/química
5.
Sci Rep ; 9(1): 14847, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619758

RESUMEN

Antibiotic resistant bacteria and genes which confer resistance to antibiotics from human/animal sources are currently considered a serious environmental and a public health concern. This problem is still little investigated in aquatic environment of developing countries according to the different climatic conditions. In this research, the total bacterial load, the abundance of relevant bacteria (Escherichia coli (E. coli), Enterococcus (Ent), and Pseudomonas), and antibiotic resistance genes (ARGs: blaOXA-48, blaCTX-M, sul1, sul2, sul3, and tet(B)) were quantified using Quantitative Polymerase Chain Reaction (qPCR) in sediments from two rivers receiving animal farming wastewaters under tropical conditions in Kinshasa, capital city of the Democratic Republic of the Congo. Human and pig host-specific markers were exploited to examine the sources of contamination. The total bacterial load correlated with relevant bacteria and genes blaOXA-48, sul3, and tet(B) (P value < 0.01). E. coli strongly correlated with 16s rDNA, Enterococcus, Pseudomonas spp., blaOXA-48, sul3, and tet(B) (P value < 0.01) and with blaCTX-M, sul1, and sul2 at a lower magnitude (P value < 0.05). The most abundant and most commonly detected ARGs were sul1, and sul2. Our findings confirmed at least two sources of contamination originating from pigs and anthropogenic activities and that animal farm wastewaters didn't exclusively contribute to antibiotic resistance profile. Moreover, our analysis sheds the light on developing countries where less than adequate infrastructure or lack of it adds to the complexity of antibiotic resistance proliferation with potential risks to the human exposure and aquatic living organisms. This research presents useful tools for the evaluation of emerging microbial contaminants in aquatic ecosystems which can be applied in the similar environment.


Asunto(s)
Farmacorresistencia Microbiana , Enterococcus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Pseudomonas/aislamiento & purificación , Ríos/microbiología , Aguas Residuales/microbiología , Animales , Ciudades , República Democrática del Congo , Países en Desarrollo , Enterococcus/genética , Escherichia coli/genética , Granjas , Genes Bacterianos , Humanos , Pseudomonas/genética , Porcinos , Microbiología del Agua , Calidad del Agua
6.
Artículo en Inglés | MEDLINE | ID: mdl-30964378

RESUMEN

An epidemiological survey conducted among users of water points and medical institutions in the N'djili Kilambu neighborhood of Kinshasa in Democratic Republic of the Congo, indicates that waterborne diseases have already affected more than 60% of the patients admitted to local clinics between 2013 and 2017. In order to raise public and political awareness about this hazardous health issue resulting from the lack of safely managed sanitation systems, this study investigates the microbial quality of drinking water from local water resources. Water samples were collected from nine wells and streams used as drinking sources, and analyzed for Fecal Indicator Bacteria (FIB), including Escherichia coli, Enterococcus, and Total Coliforms. Physicochemical parameters (pH, electrical conductivity, O2, and soluble ions (Na+, K+, PO43-, SO42-, NO3-, NO2-) were also analyzed. Except for NO3- and NO2-, the average concentrations of the physicochemical parameters and dissolved ions generally meet the guidelines for drinking/domestic water quality. By contrast, the results reveal high levels of FIB in the water samples collected during both dry and wet seasons. The contamination is significantly higher during the wet season compared to dry season, due to increased runoff, open defecation practices, and more frequent overflow of onsite sanitation systems and septic tanks.


Asunto(s)
Bacterias/aislamiento & purificación , Agua Potable/microbiología , Agua Subterránea/microbiología , Enfermedades Transmitidas por el Agua/epidemiología , Bacterias/clasificación , Ciudades , República Democrática del Congo/epidemiología , Agua Potable/química , Agua Potable/normas , Heces/microbiología , Agua Subterránea/química , Humanos , Prevalencia , Estaciones del Año
7.
Heliyon ; 5(12): e03049, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32083201

RESUMEN

Oysters and shrimp are abundant and commonly consumed seafood by the indigenous population of the Kongo central region of the Democratic Republic of the Congo (DRC). Literature reviews suggest that no data were available for the metal concentrations in these species. Consequently, the purpose of this study is to determine the metal concentrations in tissues of oysters (Egeria congica) and shrimp (Macrobrachium spp., Parapenaeus spp., Penaeus spp.) collected in November 2017 from the Atlantic Ocean Coast of DRC in the territory of Muanda. Metal levels in the seafood species studied here were put into context using international regulation for human consumption set by the Food and Agriculture Organization (FAO), Canadian Food Inspection Agency (CFIA), European Union (EU), and World Health Organization (WHO). Our results demonstrated that the concentration of heavy metals varied considerably between sampling sites and analyzed species (P < 0.05), with the values (in mg kg1) ranged between 0.05-0.41, 0.03-2.25,

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...