Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Genet Metab Rep ; 38: 101027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38077956

RESUMEN

FLNC gene encodes for Filamin-C (FLNC) protein, a sacromeric protein with important structural and signaling functions in the myocyte. Pathogenic dominant variants in FLNC were initially linked to myofibrillar myopathy and over time, evidence showed association of this gene with different forms of autosomal dominant cardiomyopathy including hypertrophic, dilated and restrictive forms. Recently, two cases of recessive FLNC mutations have been reported by Reinstein et al. and Kölbel et al., one with only cardiomyopathy and other with only myopathy. In this report, we describe a third case, a boy who was diagnosed at 10 years of age with shortness of breath and dilated cardiomyopathy who on sequencing was found to have a novel homozygous splice site variant (NM_001458.4 c.2122-1G>C) in FLNC. This case suggests that the phenotype associated with variants in FLNC is very heterogenous and can be inherited in dominant or recessive forms, with later being more severe and of earlier onset.

2.
Genome Med ; 15(1): 114, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098057

RESUMEN

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Asunto(s)
Exoma , Patrón de Herencia , Recién Nacido , Humanos , Genes Recesivos , Mutación , Secuenciación del Exoma , Linaje , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética
3.
Cureus ; 15(7): e41946, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37588305

RESUMEN

Interleukin 12 receptor beta 1 (IL12Rß1) deficiency is the most common cause of Mendelian susceptibility to mycobacterial disease (MSMD). MSMD usually predisposes the affected individuals to infections with weakly virulent mycobacteria such as Bacille Calmette-Guérin (BCG), environmental mycobacteria, non-typhoidal Salmonella, and certain other intracellular pathogens. MSMD usually presents with disseminated BCG infection after exposure to the BCG vaccine. Infections with non-typhoidal Salmonella are considered the second most common manifestation of MSMD; however, severe presentation with such organisms is unusual. In this report, we describe a case of a previously healthy infant who was found to have IL12Rß1 deficiency after she presented with hemophagocytic lymphohistiocytosis (HLH) secondary to severe Salmonella enterica sepsis. This case report highlights the importance of considering the diagnosis of MSMD in any patient presenting with severe non-typhoidal Salmonella infections even in the absence of any exposure to low-virulent mycobacteria.

4.
Cureus ; 15(4): e37488, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37187648

RESUMEN

Factor X (FX) deficiency is an extremely rare autosomal recessive inherited coagulation defect. We report a case of congenital Factor X-Riyadh deficiency discovered during a routine workup before a dental procedure. During routine work-up for dental surgery, prothrombin time (PT) and the international normalized ratio (INR) were prolonged. The prothrombin time (PT) was found to be 78.4 (normal 11-14 seconds) with an international normalized ratio (INR) of 7.83; the activated partial thromboplastin time (APTT) was 30.7 (normal 25-42 seconds). Specific coagulation factor assays confirmed an FX deficiency (<10 % of normal activity) and a mild factor VII deficiency 37% (normal 48%-124%). Molecular genetic analysis of the whole exome sequence (WES) confirmed the diagnosis of FX deficiency (homozygous pathogenic variant c. 271G>A p {Glu91Lys} chr13:113793685). The patient is currently on regular follow-up and is advised to take oral antifibrinolytic medications for any superficial or mucosal bleeding.

5.
Cureus ; 15(12): e51062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38269242

RESUMEN

Leukocyte adhesion deficiency-III (LAD-III) is a rare recessive autosomal disorder characterized by bleeding syndrome of Glanzmann-type and life-threatening infections. The main etiology of this condition is variations in the FERMT3 gene, which encodes kindlin-3, an integrin-binding protein. This protein is responsible for the activation of fibrinogen receptors and integrin-mediated hematopoietic cell adhesion. So far, only limited cases of LAD-III have been reported. This case report discusses a two-year-old male infant from the Asir region, Saudi Arabia, who was referred to the pediatric hematology service due to recurrent ecchymosis and epistaxis. He was born at full term with a history of transient tachypnea of the newborn and recurrent bronchiolitis. The patient exhibited normal platelet count and coagulation profiles alongside a familial history of bleeding disorders, including a cousin with a similar condition. The patient also presented with hypospadias and café-au-lait spots. Laboratory findings revealed anemia, microcytosis, and hypochromia indicative of iron deficiency anemia. Whole exome sequencing (WES) identified a homozygous variant of uncertain significance in the FERMT3 gene, associated with autosomal recessive LAD-III. The patient was subsequently referred to an immunology subspecialty for further investigation and bone marrow transplant preparation. This case underscores the importance of comprehensive clinical and genetic evaluations in pediatric patients with unexplained bleeding tendencies.

6.
Hum Mutat ; 43(12): 1970-1978, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36030551

RESUMEN

Primary mitochondrial diseases are a group of genetically and clinically heterogeneous disorders resulting from oxidative phosphorylation (OXPHOS) defects. COX11 encodes a copper chaperone that participates in the assembly of complex IV and has not been previously linked to human disease. In a previous study, we identified that COX11 knockdown decreased cellular adenosine triphosphate (ATP) derived from respiration, and that ATP levels could be restored with coenzyme Q10 (CoQ10 ) supplementation. This finding is surprising since COX11 has no known role in CoQ10 biosynthesis. Here, we report a novel gene-disease association by identifying biallelic pathogenic variants in COX11 associated with infantile-onset mitochondrial encephalopathies in two unrelated families using trio genome and exome sequencing. Functional studies showed that mutant COX11 fibroblasts had decreased ATP levels which could be rescued by CoQ10 . These results not only suggest that COX11 variants cause defects in energy production but reveal a potential metabolic therapeutic strategy for patients with COX11 variants.


Asunto(s)
Enfermedades Mitocondriales , Encefalomiopatías Mitocondriales , Humanos , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo
7.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35196516

RESUMEN

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas de Unión al ARN , Acetilación , Alelos , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Hum Mol Genet ; 31(9): 1430-1442, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34788807

RESUMEN

Rahman syndrome (RMNS) is a rare genetic disorder characterized by mild to severe intellectual disability, hypotonia, anxiety, autism spectrum disorder, vision problems, bone abnormalities and dysmorphic facies. RMNS is caused by de novo heterozygous mutations in the histone linker gene H1-4; however, mechanisms underlying impaired neurodevelopment in RMNS are not understood. All reported mutations associated with RMNS in H1-4 are small insertions or deletions that create a shared frameshift, resulting in a H1.4 protein that is both truncated and possessing an abnormal C-terminus frameshifted tail (H1.4 CFT). To expand understanding of mutations and phenotypes associated with mutant H1-4, we identified new variants at both the C- and N-terminus of H1.4. The clinical features of mutations identified at the C-terminus are consistent with other reports and strengthen the support of pathogenicity of H1.4 CFT. To understand how H1.4 CFT may disrupt brain function, we exogenously expressed wild-type or H1.4 CFT protein in rat hippocampal neurons and assessed neuronal structure and function. Genome-wide transcriptome analysis revealed ~ 400 genes altered in the presence of H1.4 CFT. Neuronal genes downregulated by H1.4 CFT were enriched for functional categories involved in synaptic communication and neuropeptide signaling. Neurons expressing H1.4 CFT also showed reduced neuronal activity on multielectrode arrays. These data are the first to characterize the transcriptional and functional consequence of H1.4 CFT in neurons. Our data provide insight into causes of neurodevelopmental impairments associated with frameshift mutations in the C-terminus of H1.4 and highlight the need for future studies on the function of histone H1.4 in neurons.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Trastorno del Espectro Autista/genética , Mutación del Sistema de Lectura/genética , Histonas/genética , Histonas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Ratas
9.
J Coll Physicians Surg Pak ; 31(12): 1494-1496, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794294

RESUMEN

Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an exceptionally rare type of SMA. It results from disintegration of alpha motor neurons of the spinal cord. Clinically, children affected with this disorder present between the age of six weeks to six months with respiratory distress and hypotonia. Most of the children die before the age of 13 months. Here, we report a new variant in a female infant with SMARD1 having a novel IGHMBP2 gene mutation. Despite supportive treatment, she died at the age of 5 months in hospital. To the best of our knowledge, the variant has not been described in the literature so far. Key Words:  Spinal muscular atrophy with respiratory distress type-1 (SMARD1), Hypotonia, respiratory distress, infants.


Asunto(s)
Atrofia Muscular Espinal , Síndrome de Dificultad Respiratoria del Recién Nacido , Proteínas de Unión al ADN/genética , Femenino , Humanos , Lactante , Atrofia Muscular Espinal/genética , Mutación , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Factores de Transcripción/genética
10.
Seizure ; 69: 154-172, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31054490

RESUMEN

PURPOSE: Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD: This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS: In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS: We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.


Asunto(s)
Consanguinidad , Mutación , Espasmos Infantiles/epidemiología , Espasmos Infantiles/genética , Adolescente , Niño , Preescolar , Femenino , Genes Recesivos , Humanos , Lactante , Masculino , Fenotipo , Estudios Retrospectivos , Espasmos Infantiles/clasificación , Adulto Joven
12.
Genet Med ; 21(3): 736-742, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30237576

RESUMEN

PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.


Asunto(s)
Enfermedad/genética , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Variación Biológica Poblacional/genética , Niño , Preescolar , Diagnóstico , Técnicas y Procedimientos Diagnósticos , Femenino , Pruebas Genéticas/normas , Variación Genética , Genotipo , Herencia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Fenotipo
13.
Clin Genet ; 95(2): 310-319, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30561787

RESUMEN

Defects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel. The founder nature of many of the variants allowed us to calculate the minimum disease burden for these disorders in our population ~1:30 000, which is much higher than previous estimates in other populations. Clinically, we found an interesting trend toward genotype/phenotype correlation in terms of long-term survival. Nearly half (40/75) of our peroxisomal disorders patients had documented survival beyond 1 year of age. Most unusual among the long-term survivors was a multiplex family in which the affected members presented as adults with non-specific intellectual disability and epilepsy. Other unusual presentations included the very recently described peroxisomal fatty acyl-CoA reductase 1 disorder as well as CRD, spastic paraparesis, white matter (CRSPW) syndrome. We conclude that peroxisomal disorders are highly heterogeneous in their clinical presentation. Our data also confirm the demonstration that milder forms of Zellweger spectrum disorders cannot be ruled out by the "gold standard" very long chain fatty acids assay, which highlights the value of a genomics-first approach in these cases.


Asunto(s)
Árabes , Trastorno Peroxisomal/epidemiología , Trastorno Peroxisomal/etiología , Árabes/genética , Biomarcadores , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Consanguinidad , Costo de Enfermedad , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Trastorno Peroxisomal/diagnóstico , Trastorno Peroxisomal/terapia , Fenotipo , Vigilancia de la Población , Pronóstico
14.
Genet Med ; 20(12): 1609-1616, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29620724

RESUMEN

PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.


Asunto(s)
Exoma/genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Anomalías Musculoesqueléticas/genética , Alelos , Proteínas Sanguíneas/genética , Hidrolasas de Éster Carboxílico , Estudios de Cohortes , Exorribonucleasas/genética , Femenino , Proteínas Fetales/genética , Efecto Fundador , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Anomalías Musculoesqueléticas/clasificación , Anomalías Musculoesqueléticas/patología , Proteínas de Neoplasias/genética , Proteínas Oncogénicas/genética , Fenotipo , Receptores de Superficie Celular/genética , Proteína Wnt3A/genética
15.
J Cent Nerv Syst Dis ; 10: 1179573518759682, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29531481

RESUMEN

BACKGROUND: Cerebellar ataxia, mental retardation, and disequilibrium syndrome (CAMRQ) is a heterogeneous group of genetic disorders that have been grouped by shared clinical features; all of these features are transmitted via an autosomal recessive mechanism. Four variants of this syndrome have been identified so far, and each one differs in terms of both clinical and genotypical features. CAMRQ4 is a rare genetic disorder characterized by mental retardation, ataxia or an inability to walk, dysarthria and, in some patients, quadrupedal gait. METHODS: We investigated three Saudi families with CAMRQ4. Blood samples were collected from the affected patients, their parents, and healthy siblings. DNA was extracted from whole blood, and whole-exome sequencing was performed. Findings were confirmed by segregation analysis, which was performed on other family members. RESULTS: Thus far, 17 patients have been affected by CAMRQ4. Genetic analysis of all patients, including our current patients, showed a mutation in the aminophospholipid transporter, class I, type 8A, member 2 gene (ATP8A2). A series of common phenotypical features have been reported in these patients, with few exceptions. Ataxia, mental retardation, and hypotonia were present in all patients, consanguinity in 90% and abnormal movements in 50%. Moreover, 40% achieved ambulation at least once in their lifetime, 40% had microcephaly, whereas 30% were mute. Magnetic resonance imaging (MRI) of the brain was normal in 60% of patients. CONCLUSIONS: We described the largest cohort of patients with CAMRQ4 syndrome and identified three novel mutations. CAMRQ4 syndrome should be suspected in patients presenting with ataxia, intellectual disability, hypotonia, microcephaly, choreoathetoid movements, ophthalmoplegia, and global developmental delay, even if brain MRI appears normal.

16.
Genet Med ; 20(4): 420-427, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28749478

RESUMEN

PurposeThe application of genomic sequencing to investigate unexplained death during early human development, a form of lethality likely enriched for severe Mendelian disorders, has been limited.MethodsIn this study, we employed exome sequencing as a molecular autopsy tool in a cohort of 44 families with at least one death or lethal fetal malformation at any stage of in utero development. Where no DNA was available from the fetus, we performed molecular autopsy by proxy, i.e., through parental testing.ResultsPathogenic or likely pathogenic variants were identified in 22 families (50%), and variants of unknown significance were identified in further 15 families (34%). These variants were in genes known to cause embryonic or perinatal lethality (ALPL, GUSB, SLC17A5, MRPS16, THSD1, PIEZO1, and CTSA), genes known to cause Mendelian phenotypes that do not typically include embryonic lethality (INVS, FKTN, MYBPC3, COL11A2, KRIT1, ASCC1, NEB, LZTR1, TTC21B, AGT, KLHL41, GFPT1, and WDR81) and genes with no established links to human disease that we propose as novel candidates supported by embryonic lethality of their orthologs or other lines of evidence (MS4A7, SERPINA11, FCRL4, MYBPHL, PRPF19, VPS13D, KIAA1109, MOCS3, SVOPL, FEN1, HSPB11, KIF19, and EXOC3L2).ConclusionOur results suggest that molecular autopsy in pregnancy losses is a practical and high-yield alternative to traditional autopsy, and an opportunity for bringing precision medicine to the clinical practice of perinatology.


Asunto(s)
Autopsia , Técnicas de Diagnóstico Molecular , Autopsia/métodos , Causas de Muerte , Femenino , Genes Letales , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Humanos , Medicina de Precisión , Embarazo , Diagnóstico Prenatal , Secuenciación del Exoma , Flujo de Trabajo
18.
Hum Genet ; 136(11-12): 1419-1429, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28940097

RESUMEN

Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.


Asunto(s)
Exoma/genética , Heterogeneidad Genética , Marcadores Genéticos , Discapacidad Intelectual/genética , Mutación , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Conformación Proteica
19.
Nat Genet ; 49(4): 537-549, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28191891

RESUMEN

To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Enanismo/genética , Inestabilidad Genómica/genética , Microcefalia/genética , Mutación/genética , Línea Celular , Daño del ADN/genética , Femenino , Humanos , Masculino
20.
Genome Biol ; 17(1): 242, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27894351

RESUMEN

BACKGROUND: Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. RESULTS: We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their "mutation load" beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. CONCLUSIONS: Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.


Asunto(s)
Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Ciliopatías/genética , Encefalocele/genética , Mutación/genética , Enfermedades Renales Poliquísticas/genética , Alelos , Cilios/patología , Trastornos de la Motilidad Ciliar/patología , Ciliopatías/patología , Análisis Mutacional de ADN , Encefalocele/patología , Estudios de Asociación Genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Enfermedades Renales Poliquísticas/patología , Retina/metabolismo , Retina/patología , Retinitis Pigmentosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...