Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(19): 21204-21220, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764688

RESUMEN

Zeolite-A was synthesized successfully from kaolinite and hybridized with two species of biopolymers (chitosan (CH/Z) and ß-cyclodextrin (CD/Z)). The obtained hybridized forms were assessed as potential adsorbents of Congo red synthetic dye (CR) with enhanced affinities and elimination capacities. The synthesized CD/Z and CH/Z hybrids demonstrated uptake capacities of 223.6 and 208.7 mg/g, which are significantly higher than single-phase zeolite-A (140.3 mg/g). The integrated polymers change the surface area, surface reactivity, and number of free active receptors that are already present. The classic isotherm investigations validate Langmuir equilibrium behavior for ZA and Freundlich properties for CD/Z and CH/Z. The steric parameters validate a strong increase in the existing active receptors after the incorporation of CD (CD/Z) to be 98.1 mg/g as compared to 83 mg/g for CH/Z and 60.6 mg/g for ZA, which illustrate the detected uptake behaviors. Moreover, the CR dye was adsorbed as several molecules per single site, reflecting the vertical uptake of these molecules by multimolecular mechanisms. The energetic assessment, considering both Gaussian energies and adsorption energies (<40 kJ/mol), validates the dominant impact of the physical mechanism during the sequestration of CR (dipole binding interactions (2-29 kJ/mol) and hydrogen bonds (<30 kJ/mol)), in addition to the considerable effect of ion exchange processes. Based on the thermodynamic parameters, the CR molecules were adsorbed by exothermic and spontaneous reactions.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124264, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38603961

RESUMEN

Design and eco-friendly fabrication of affordable and sustainable materials for the treatment of wastewater consisting of dyes, antibiotics, and other harmful substances has always been demanding. Untreated wastewater being released from industries imposes serious threats to our ecosystem, seeking convenient approaches to diminish this alarming issue. Here in this work, we synthesized MgO/CuO nanocomposites from a plant extract of Ammi visnaga L. and then employed these nanocomposites for the treatment of organic dye (methylene blue). We characterized the synthesized nanocomposites by dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). DLS presented information about the explicit size of nanocomposites, while the surface charge was examined by zeta potential. XRD provided detailed information about the crystalline behavior and the information regarding surface morphology and size was extracted by SEM, TEM, and AFM. Moreover, the fabricated nanocomposites were used as a photocatalyst in the treatment of methylene blue. The overall catalytic reaction took an hour to complete, and the value of percentage degradation was 98 %. Substantially, a detailed account of the kinetics, rate of reaction, and mechanism is also fostered in the context. The presented study can assist scientists and researchers around the world to reproduce the results and use them to apply them on a broader scale.

3.
ACS Omega ; 9(10): 11534-11550, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496923

RESUMEN

Synergistic studies were conducted to evaluate the retention potentiality of exfoliating bentonite (EXBEN) as well as its methanol hybridization derivative (Mth/EXBEN) toward Cd(II) ions to be able to verify the effects of the transformation processes. The adsorption characteristics were established by considering the steric and energetic aspects of the implemented advanced equilibrium simulation, specifically the monolayer model with a single energy level. Throughout the full saturation states, the adsorption characteristics of Cd(II) increased substantially to 363.7 mg/g following the methanol hybridized treatment in comparison to EXBEN (293.2 mg/g) as well as raw bentonite (BEN) (187.3 mg/g). The steric analysis indicated a significant rise in the levels of the active sites following the exfoliation procedure [retention site density (Nm) = 162.96 mg/g] and the chemical modification with methanol [retention site density (Nm) = 157.1 mg/g]. These findings clarify the improvement in the potential of Mth/EXBEN to eliminate Cd(II). Furthermore, each open site of Mth/EXBEN has the capacity to bind approximately three ions of Cd(II) in a vertically aligned manner. The energetic investigations, encompassing the Gaussian energy (less than 8 kJ/mol) plus the adsorption energy (less than 40 kJ/mol), provide evidence of the physical sequestration of Cd(II). This process may involve the collaborative impacts of dipole binding forces (ranging from 2 to 29 kJ/mol) and hydrogen binding (less than 30 kJ/mol). The measurable thermodynamic functions, particularly entropy, internal energy, and free enthalpy, corroborate the exothermic and spontaneous nature of Cd(II) retention by Mth/EXBEN, as opposed to those by EXBEN and BE.

4.
Adv Colloid Interface Sci ; 324: 103093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306848

RESUMEN

With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.

5.
Adv Colloid Interface Sci ; 324: 103077, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219341

RESUMEN

Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.

6.
ACS Omega ; 8(49): 47210-47223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107958

RESUMEN

The synergetic improvement effect of the polyaniline (PANI) hybridization process on the adsorption of rhodamine B dye (RB) by PANI/coal hybrid material (PANI/C) has been evaluated using both traditional equilibrium modeling and advanced isotherm investigations. The composite was prepared by polymerizing polyaniline in the presence of coal fractions with a surface area of 27.7 m2/g. The PANI/C hybrid has an improved capacity to adsorb RB dye (423.5 mg/g) in comparison to coal particles (254.3 mg/g). The maintained increase in the elimination properties of PANI/C has been illustrated using the steric characteristics of active site density (Nm) as well as the total number of adsorbed RB on a single active site (n). However, the incorporation of PANI did not yield any substantial impact on the existing active sites' quantity, but the hybridization processes greatly influenced the selectivity and affinity of each active site, in addition to the aggregation characteristics of the dye as it interacts with the composite's surface. Whereas raw coal can only adsorb three molecules of RB, each active site throughout the PANI/C surface can adsorb approximately eight RB molecules. This is also evidence of RB dye adsorption in a vertical arrangement, which involves multimolecular processes. The Gaussian energy (4.01-5.59 kJ/mol) and adsorption energy (-4.34-4.68 kJ/mol) revealed the controllable impact of physical mechanisms. These mechanisms may include van der Waals forces, dipole-dipole interactions, and hydrogen bonds (<30 kJ/mol). The thermodynamic functions, such as enthalpy, internal energy, and entropy, that have been assessed provide evidence supporting the exothermic and spontaneous nature of the RB uptake processes by PANI/C.

7.
ACS Omega ; 8(50): 48166-48180, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144066

RESUMEN

Exfoliated kaolinite nanosheets (EXK) and their hybridization with ß-cyclodextrin (ß-CD/EXK) were evaluated as potential-enhanced adsorbents of methyl parathion (MP) in synergetic investigations to determine the effects of the different modification procedures. The adsorption behaviors were described on the basis of the energetic steric and energetic factors of the specific advanced equilibrium models (monolayer model of one energy). The functionalization process with ß-CD enhanced the adsorption behaviors of MP considerably to 350.6 mg/g in comparison to EXK (291.7 mg/g) and natural kaolinite (K) (244.7 mg/g). The steric studies revealed a remarkable improvement in the quantities of the existing receptors after exfoliation (Nm = 134.4 mg/g) followed by ß-CD hybridization (Nm = 162.3 mg/g) as compared to K (75.7 mg/g), which was reflected in the determined adsorption capacities of MP. Additionally, each active free site of ß-CD/EXK can adsorb about 3 molecules of MP, which occur in a vertical orientation by types of multimolecular mechanisms. The energetic investigations of Gaussian energy (<8.6 kJ/mol) and adsorption energy (<40 kJ/mol) validate the physical adsorption of MP, which might involve the cooperation of dipole bonding forces, van der Waals, and hydrogen bonding. The properties and entropy values, free enthalpy, and intern energy as the investigated thermodynamic functions declared the exothermic and spontaneous behaviors of the MP adsorption.

8.
RSC Adv ; 13(43): 30151-30167, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37849691

RESUMEN

An advanced form of magnesium-doped hydroxyapatite (Mg HAP) was synthesized and hybridized with cellulose fibers, producing a safe biocomposite (CF/Mg HAP) as an enhanced delivery structure of traditional oxaliplatin (OXPN) chemotherapy drug during the treatment stages of colorectal cancer. The qualifications of CF/Mg HAP as a carrier for OXPN were followed based on loading, release, and cytotoxicity as compared to Mg HAP. The CF/Mg HAP composite exhibits a notably higher OXPN encapsulation capacity (256.2 mg g-1) than the Mg HAP phase (148.9 mg g-1). The OXPN encapsulation process into CF/Mg HAP displays the isotherm behavior of the Langmuir model (R2 = 0.99) and the kinetic assumptions of pseudo-first-order kinetics (R2 > 0.95). The steric studies reflect a strong increment in the quantities of the free sites after the cellulose hybridization steps (Nm = 178.58 mg g-1) as compared to pure Mg HAP (Nm = 69.39 mg g-1). Also, the capacity of each site was enhanced to be loaded by 2 OXPN molecules (n = 1.43) in a vertical orientation. The OXPN encapsulation energy into CF/Mg HAP (<40 kJ mol-1) reflects physical encapsulation reactions involving van der Waals forces and hydrogen bonding. The OXPN release profiles of CF/Mg HAP exhibit slow and controlled properties for about 100 h, either at pH 5.5 or pH 7.4. The release kinetics and diffusion exponent (>0.45) signify non-Fickian transport and a complex erosion/diffusion release mechanism. The free CF/Mg HAP particles display a considerable cytotoxic effect on the HCT-116 cancer cells (21.82% cell viability), and their OXPN-loaded product shows a strong cytotoxic effect (1.85% cell viability).

9.
ACS Omega ; 8(41): 38330-38344, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867674

RESUMEN

The current work involves the modification of diatomite's biosiliceous frustules employing chitosan polymer chains (CS/Di) to serve as low-cost, biocompatible, multifunctional, and enhanced pharmaceutical delivery systems for 5-fluorouracil (5-Fu) together with oxaliplatin (OXPL). The CS/Di carrier displayed strong loading characteristics, notably at saturation (249.17 mg/g (OXPL) and 267.6 mg/g (5-Fu)), demonstrating a substantial 5-Fu affinity. The loading of the two types of medications onto CS/Di was conducted based on the kinetic behaviors of the conventional pseudo-first-order theory (R2 > 0.90). However, while the loading of OXPL follows the isotherm assumptions of the classic Langmuir model (R2 = 0.99), the loading of 5-Fu displays Fruendlich isotherm properties. Therefore, the 5-Fu loading displayed physical, heterogeneous, and multilayer loading properties, whereas the loading of OXPL occurred in homogeneous and monolayer form. The densities of occupied active sites of CS/Di were 37.19 and 32.8 mg/g for the sequestrations of OXPL and 5-Fu, respectively. Furthermore, by means of multimolecular processes, each loading site of CS/Di can bind up to 8 molecules of OXPL and 9 molecules of 5-Fu in a vertical orientation. This observation explains the higher loading capacities of 5-Fu in comparison to OXPL. The loading energies, which exhibit values <40 kJ/mol, provide confirmation of the dominant and significant consequences of physical processes as the regulating mechanisms. The release patterns of OXPL and 5-Fu demonstrate prolonged features over a duration of up to 120 h. The release kinetic simulation and diffusion exponents which are more than 0.45 provide evidence of the release of OXP and 5-Fu via non-Fickian transportation characteristics and the erosion/diffusion mechanism. The CS/Di carrier exhibited a substantial enhancement in the cytotoxicity of OXPL and 5-Fu against HCT-116 carcinoma cell lines, resulting in a reduction in cell viability by 4.61 and 2.26% respectively.

10.
Molecules ; 28(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894656

RESUMEN

The synergetic enhancement effect of the polyaniline (PANI) integration process on the adsorption properties of the PANI/zeolite-A composite (PANI/ZA) as an adsorbent for malachite green and Congo red synthetic dyes was evaluated based on classic equilibrium modelling in addition to the steric and energetic parameters of advanced isotherm studies. The PANI/ZA composite displays enhanced adsorption capacities for both methylene blue (270.9 mg/g) and Congo red (235.5 mg/g) as compared to ZA particles (methylene blue (179.6 mg/g) and Congo red (140.3 mg/g)). The reported enhancement was illustrated based on the steric parameters of active site density (Nm) and the number of adsorbed dyes per active site (n). The integration of PANI strongly induced the quantities of the existing active sites that have enhanced affinities towards both methylene blue (109.2 mg/g) and Congo red (92.9 mg/g) as compared to the present sites on the surface of ZA. Every site on the surface of PANI/ZA can adsorb about four methylene blue molecules and five Congo red molecules, signifying the vertical orientation of their adsorbed ions and their uptake by multi-molecular mechanisms. The energetic investigation of the methylene blue (-10.26 to -16.8 kJ/mol) and Congo red (-9.38 to -16.49 kJ/mol) adsorption reactions by PANI/ZA suggested the operation of physical mechanisms during their uptake by PANI/ZA. These mechanisms might involve van der Waals forces, dipole bonding forces, and hydrogen bonding (<30 kJ/mol). The evaluated thermodynamic functions, including enthalpy, internal energy, and entropy, validate the exothermic and spontaneous behaviours of the methylene blue and Congo red uptake processes by PANI/ZA.

11.
Molecules ; 28(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175102

RESUMEN

Brown macroalgae (BMG) were used as carriers for ZnO (ZnO/BMG) and cobalt-doped ZnO (Co-ZnO/BMG) via facile microwave-assisted hydrothermal synthesis. The multifunctional structures of synthesized composites were evaluated as enhanced antioxidant and anti-diabetic agents based on the synergistic effects of ZnO, Co-ZnO, and BMG. BMG substrate incorporation and cobalt doping notably enhanced the bioactivity of the synthesized ZnO nanoparticles. As an antioxidant, the Co-ZnO/BMG composite exhibited highly effective scavenging properties for the common free reactive oxygen radicals (DPPH [89.6 ± 1.5%], nitric oxide [90.2 ± 1.3%], ABTS [87.7 ± 1.8%], and O2●- [46.7 ± 1.9%]) as compared to ascorbic acid. Additionally, its anti-diabetic activity was enhanced significantly and strongly inhibited essential oxidative enzymes (porcine α-amylase (90.6 ± 1.5%), crude α-amylase (84.3 ± 1.8%), pancreatic α-glucosidase (95.7 ± 1.4%), crude intestinal α-glucosidase (93.4 ± 1.8%), and amyloglucosidase (96.2 ± 1.4%)). Co-ZnO/BMG inhibitory activity was higher than that of miglitol, and in some cases, higher than or close to that of acarbose. Therefore, the synthetic Co-ZnO/BMG composite can be used as a commercial anti-diabetic and antioxidant agent, considering the cost and adverse side effects of current drugs. The results also demonstrate the impact of cobalt doping and BMG integration on the biological activity of ZnO.


Asunto(s)
Diabetes Mellitus , Nanopartículas del Metal , Sargassum , Algas Marinas , Óxido de Zinc , Animales , Porcinos , Antioxidantes/farmacología , Antioxidantes/química , Sargassum/metabolismo , Óxido de Zinc/farmacología , Óxido de Zinc/química , alfa-Glucosidasas , Hipoglucemiantes/farmacología , alfa-Amilasas , Cobalto/química , Nanopartículas del Metal/química , Algas Marinas/metabolismo
12.
ACS Omega ; 8(51): 49347-49361, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162761

RESUMEN

Novel glauconite nanorods (GNRs) were synthesized by the sonication-induced chemical expansion and scrolling process of natural glauconite. The synthetic nanostructure was characterized by different analytical techniques as a superior adsorbent for the malachite green dye (MG). The synthetic GNRs were detected as porous nanorods with an average length of 150 nm to 5 µm, an average diameter of 25 to 200 nm, and a specific surface area of 123.7 m2/g. As an adsorbent for MG, the synthetic GNRs showed superior uptake capacity up to 1265.6 mg/g at the saturation stage, which is higher than most of the recently developed highly adsorbent dyes. The adsorption behavior and mechanistic properties were depicted by using modern and traditional equilibrium modeling. The kinetic assumption of the pseudo-first-order model (R2 > 0.94) and the classic isotherm of the Langmuir equilibrium model (R2 > 0.97) were used to describe the adsorption reactions. The steric investigation demonstrates that each active site on the surface of GNRs can adsorb up to three MG molecules (n = 2.19-2.48) in vertical orientation involving multimolecular mechanisms. Also, the determined active site density (577.89 mg/g) demonstrates the enrichment of the surface of GNRs with numerous adsorption receptors with strong affinity for the MG dye. The energetic study, including Gaussian energy (6.27-7.97 kJ/mol) and adsorption energy (9.45-10.43 kJ/mol), revealed that GNRs had physically adsorbed the dye, which might involve electrostatic attraction, hydrogen bonding, van der Waals forces, and dipole forces. The internal energy, enthalpy, and entropy determined the exothermic and spontaneous uptake of MG.

13.
ACS Omega ; 7(35): 31218-31232, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092609

RESUMEN

An iron-impeded geopolymer (Fe/GP) was synthesized from natural ferruginous kaolinite and optical waste for enhanced decontamination of Congo red (CR) dye. The adsorption properties of Fe/GP were assessed using an advanced monolayer equilibrium model of one energy (R 2 > 0.99). Fe/GP possessed an active site density of 391.3 mg/g, which induced an adsorption capacity of 634 mg/g at the saturation state. The number of adsorbed CR molecules per site (n = 1.56-1.62) reflected the possible uptake of two molecules per site via a multimolecular mechanism. The adsorption energy (5.12-5.7 kJ/mol) reflected the physical adsorption of the CR molecules via hydrogen bonding and/or van der Waals forces. As a catalyst, notable activity toward photo-Fenton oxidation was achieved even at high CR concentrations. Complete oxidation was observed after 30 (CR concentration: 10 mg/L), 50 (20 mg/L), 80 (30 mg/L), 120 (40 mg/L), and 140 min (50 mg/L). High oxidation efficiency was achieved using 0.1 g/L Fe/GP, 0.1 mL of hydrogen peroxide (H2O2), and a visible light source. Increasing the Fe/GP dosage to 0.3 g/L resulted in complete oxidation of CR (100 mg/L) after 220 min. Therefore, synthetic Fe/GP can be used as a low-cost and superior catalyst and adsorbent for the removal of CR-based contaminants via adsorption or advanced oxidation processes.

14.
ACS Appl Mater Interfaces ; 14(5): 6740-6753, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080844

RESUMEN

The catalytic activity and stability of metal nanocatalysts toward agglomeration and detachment during their preparation on a support surface are major challenges in practical applications. Herein, we report a novel, one-step, synchronized electro-oxidation-reduction "bottom-up" approach for the preparation of small and highly stable Cu nanoparticles (NPs) supported on a porous inorganic (TiO2@SiO2) coating with significant catalytic activity and stability. This unique embedded structure restrains the sintering of CuNPs on a porous TiO2@SiO2 surface at a high temperature and exhibits a high reduction ratio (100% in 60 s) and no decay in activity even after 30 cycles (>98% conversion in 3 min). This occurs in a model reaction of 4-nitrophenol (4-NP) hydrogenation, far exceeding the performance of most common catalysts observed to date. More importantly, nitroarene, ketone/aldehydes, and organic dyes were reduced to the corresponding compounds with 100% conversion. Density functional theory (DFT) calculations of experimental model systems with six Cu, two Fe, and four Ag clusters anchored on the TiO2 surface were conducted to verify the experimental observations. The experimental results and DFT calculations revealed that CuNPs not only favor the adsorption on the TiO2 surface over those of Fe and AgNPs but also boost the adsorption energy and activity of 4-NP. This strategy has also been extended to the preparation of other single-atom catalysts (e.g., FeNPs-TiO2@SiO2 and AgNPs-TiO2@SiO2), which exhibit excellent catalytic performance.

15.
J Colloid Interface Sci ; 573: 31-44, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32268261

RESUMEN

Surface chemistry is a significant field of research, especially for the preparation of organic-inorganic hybrid materials in which nearly every atom is anchored at the interface. Herein we report on the functional binding agents (FBAs), Mg(OH)2 or Co(OH)2-Mg(OH)2-Co(OH)(NO3), as efficient tools for functionalising surfaces, whereby the morphology and growth of the organic-inorganic coating can be varied by varying the interfacial composition to achieve improved functionality. To demonstrate the potential of this strategy, we combine plasma electrolytic oxidation (PEO) and a two-step dip chemical coating (DCC) technique to deliver multi-layered constructions of several chemical compositions comprising inorganic and organic components. A novel single layer of FBAs is fabricated on the rough inorganic coating through chemical treatment via DCC, transforming it into a binding site for primary clusters of 2-mercaptobenzimidazole (MBI) molecules. Thus, FBAs form coordination complexes with organic molecules, which grow on FBA surfaces. Finally, electrochemical measurements reveal that the self-assembly of organic-inorganic hybrid heterostructures appreciably suppresses metal oxidation and oxygen reduction, due to a synergistic effect arising from the combination of FBAs with organic and inorganic coatings.

16.
J Colloid Interface Sci ; 565: 86-95, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935588

RESUMEN

Flower-like organic materials have been used for applications in supercapacitors, catalysis, corrosion science, but no report of "flower" from metal-organic compounds on porous inorganic surface has been available. Here, we report the successful fabrication of flowerlike organic-inorganic materials via the combination of TiO2-MgO film prepared on magnesium alloy through plasma electrolytic oxidation (PEO) as inorganic components and metal-quinoline, Na-8-hydroxyquinoline-5-sulfonic acid (NaHQS) and Co(II)-8-hydroxyquinoline-5-sulfonic acid (CoHQS), as the organic component. Interaction between the CoHQS complex and the porous inorganic materials then leads to the formation of flowerlike organic-inorganic coating on the magnesium surface. Furthermore, a detailed analysis of surface morphologies indicates that MHQS molecules are linked together via kinds of intermolecular hydrogen bonds and non-covalent π-π bonds between heterocyclic molecules. PEO-TiO2-CoHQS and PEO-TiO2-NaHQS exhibit enhanced electrochemical performance and chemical stability compared with the free MHQS, which was discussed based on polarization and impedance interpretation. This is attributed to the physical and chemical adsorption on the coating surface as well as the high surface area of the CoHQS in the nanoflowers.

17.
Sci Rep ; 8(1): 10925, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026470

RESUMEN

In the present study, the synergistic effect on the corrosion protection properties of Mg alloys subjected to plasma electrolytic oxidation and chemically treated with thiourea as an inhibitor is investigated by surface microstructure analysis, evaluation of the electrochemical performance, and chemical quantum calculations. Physical adsorption of thiourea on the inorganic material surface might be due to physical interaction between thiourea with a low ionization potential serving as an electron donor and the inorganic components with high electron affinities acting as acceptors. The results from potentiodynamic polarization and electrochemical impedance spectroscopy for organic-inorganic coating reveal a clear decrease in the corrosion rate owing to the introduced thiourea.

18.
RSC Adv ; 8(41): 23294-23318, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35540133

RESUMEN

This review describes the contemporary development applications on scientific areas of acyclic and cyclic Schiff bases and their complexes with an emphasis on the author's contribution to the field. After a short historical introduction, this manuscript is divided into two main parts. In the first section, Schiff bases are reviewed for their biological activities including antibacterial, antifungal, antioxidant, cytotoxic, and enzymatic activities as well as their interaction with single-stranded-DNA which have shown remarkable activities in each region of research. The second part deals with the corrosion of metal and its alloys in corrosive environments and their organic inhibitors. The main section of this part is to investigate the different chemical structures for Schiff bases used in such aggressive solution to protect metals. Knowing the maximum corrosion efficiency or bioactivity of a specific chemical structure in a specific application environment is helpful for choosing the most appropriate compound.

19.
ACS Appl Mater Interfaces ; 9(34): 28967-28979, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28771306

RESUMEN

The electrochemical roles of electron-donor and -acceptor agents in surface reforming of magnesium alloy were investigated via plasma electrolysis. The surface modification was performed in an aluminate-based electrolyte, having urea and hydrazine with inherent molecular structures, which might act as electron acceptor and donor during plasma-assisted electrochemical reaction. The presence of hydrazine working as donor would promote the formation of magnesium aluminates in the oxide layer, resulting in superior compactness of the oxide layer to that when urea was used as the working as acceptor since the precipitation of MgCO3 was favored in the electrolyte with urea. The thickness of the oxide layer formed by a combination of urea and hydrazine was higher than urea, while the porosity was higher than hydrazine. The electrochemical performance was enhanced in the order of hydrazine, urea and hydrazine combined, and urea, which was discussed on the basis of impedance interpretation.

20.
Artículo en Inglés | MEDLINE | ID: mdl-25203213

RESUMEN

New tridentate ligand 3-amino-4-{1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2phenyl-2,3-dihydro-1H-pyrazol-4-ylazo}-phenol L was synthesized from the reaction of 1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylamine and 3.4-amino phenol. A complexes of these ligand [Ni(II)(L)(H2O)2 Cl]Cl, [pt(IV)(L)Cl3]Cl and [M(II)(L)Cl]Cl (M=Pd (II), Zn (II), Cd (II) and Hg (II) were synthesized. The complexes were characterized by spectroscopic methods and magnetic moment measurements, elemental analysis, metal content, Chloride containing and conductance. These studies revealed octahedral geometries for the Ni (II), pt (IV) complexes, square planar for Pd (II) complex and tetrahedral for the Zn (II), Cd(II) and Hg (II) complexes. The study of complexes formation via molar ratio and job method in DMF solution has been investigated and results were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1). The thermodynamic parameters, such as ΔE(*), ΔH(*), ΔS(*) ΔG(*) and K are calculated from the TGA curve using Coats-Redfern method. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase. The synthesized ligand and its metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonasaeruginosa).


Asunto(s)
Antibacterianos/química , Compuestos Azo/química , Complejos de Coordinación/química , Pirazoles/química , Bases de Schiff/química , Aminación , Antibacterianos/síntesis química , Antibacterianos/farmacología , Compuestos Azo/síntesis química , Compuestos Azo/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Humanos , Ligandos , Pirazoles/síntesis química , Pirazoles/farmacología , Bases de Schiff/síntesis química , Bases de Schiff/farmacología , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...