Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 161, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725021

RESUMEN

BACKGROUND: PD-L1 intrinsically promotes tumor progression through multiple mechanisms, which potentially leads to resistance to anti-PD-1/PD-L1 therapies. The intrinsic effect of PD-L1 on breast cancer (BC) cell proliferation has not been fully elucidated. METHODS: we used proteomics, gene expression knockdown (KD), quantitative immunofluorescence (qIF), western blots, functional assays including colony-forming assay (CFA) and real-time cell analyzer (RTCA), and in vivo data using immunohistochemistry in breast cancer patients. RESULTS: PD-L1 promoted BC cell proliferation by accelerating cell cycle entry at the G1-to-S phase transition. Global proteomic analysis of the differentially expressed nuclear proteins indicated the involvement of several proliferation-related molecules, including p21CIP1/WAF1. Western blotting and qIF demonstrated the higher expression of SKP2 and the lower expression of p21CIP1/WAF1 and p27Kip1 in PD-L1 expressing (PD-L1pos) cells as compared to PD-L1 KD (PD-L1KD) cells. Xenograft-derived cells and the TCGA BC dataset confirmed this relationship in vivo. Functionally, CFA and RTCA demonstrated the central role of SKP2 in promoting PD-L1-mediated proliferation. Finally, immunohistochemistry in 74 breast cancer patients confirmed PD-L1 and SKP-p21/p27 axis relationship, as it showed a highly statistically significant correlation between SKP2 and PD-L1 expression (p < 0.001), and both correlated significantly with the proliferation marker Ki-67 (p < 0.001). On the other hand, there was a statistically significant inverse relationship between PD-L1 and p21CIP1/WAF1 expression (p = 0.005). Importantly, double negativity for p21CIP1/WAF1 and p27Kip1 correlated significantly with PD-L1 (p < 0.001), SKP2 (p = 0.002), and Ki-67 (p = 0.002). CONCLUSIONS: we have demonstrated the role of the SKP2-p27/p21 axis in intrinsic PD-L1-enhanced cell cycle progression. Inhibitors of SKP2 expression can alleviate resistance to ICPIs.

2.
Front Immunol ; 15: 1329610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361950

RESUMEN

Mutations in STK4 (MST1) are implicated in a form of autosomal recessive combined immunodeficiency, resulting in recurrent infections (especially Epstein-Barr virus viremia), autoimmunity, and cardiac malformations. Here we report a patient with an atypically mild presentation of this disease, initially presenting with severe T cell lymphopenia (< 500 per mm3) and intermittent neutropenia, but now surviving well on immunoglobulins and prophylactic antibacterial treatment. She harbors a unique STK4 mutation that lies further downstream than all others reported to date. Unlike other published cases, her mRNA transcript is not vulnerable to nonsense mediated decay (NMD) and yields a truncated protein that is expected to lose only the C-terminal SARAH domain. This domain is critical for autodimerization and autophosphorylation. While exhibiting significant differences from controls, this patient's T cell proliferation defects and susceptibility to apoptosis are not as severe as reported elsewhere. Expression of PD-1 is in line with healthy controls. Similarly, the dysregulation seen in immunophenotyping is not as pronounced as in other published cases. The nature of this mutation, enabling its evasion from NMD, provides a rare glimpse into the clinical and cellular features associated with the absence of a "null" phenotype of this protein.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfopenia , Humanos , Femenino , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4 , Mutación , Linfopenia/genética , Linfocitos T , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética
3.
Metabolites ; 13(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37623881

RESUMEN

According to studies, the microbiome may contribute to the emergence and spread of breast cancer. E. coli is one of the Enterobacteriaceae family recently found to be present as part of the breast tissue microbiota. In this study, we focused on the effect of E. coli secretome free of cells on MCF-7 metabolism. Liquid chromatography-mass spectrometry (LC-MS) metabolomics was used to study the E. coli secretome and its role in MCF-7 intra- and extracellular metabolites. A comparison was made between secretome-exposed cells and unexposed controls. Our analysis revealed significant alterations in 31 intracellular and 55 extracellular metabolites following secretome exposure. Several metabolic pathways, including lactate, aminoacyl-tRNA biosynthesis, purine metabolism, and energy metabolism, were found to be dysregulated upon E. coli secretome exposure. E. coli can alter the breast cancer cells' metabolism through its secretome which disrupts key metabolic pathways of MCF-7 cells. These microbial metabolites from the secretome hold promise as biomarkers of drug resistance or innovative approaches for cancer treatment, either as standalone therapies or in combination with other medicines.

4.
Front Immunol ; 14: 1171816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483610

RESUMEN

Introduction: BRAFV600E mutations frequently occur in papillary thyroid cancer (PTC). ß-catenin, encoded by CTNNB1, is a key downstream component of the canonical Wnt signaling pathway and is often overexpressed in PTC. BRAFV600E-driven PTC tumors rely on Wnt/ß-catenin signaling to sustain growth and progression. Methods: In the present study, we investigated the tumorigenicity of thyroid cancer cells derived from BRAFV600E PTC mice following Ctnnb1 ablation (BVE-Ctnnb1null). Results: Remarkably, the tumorigenic potential of BVE-Ctnnb1null tumor cells was lost in nude mice. Global gene expression analysis of BVE-Ctnnb1null tumor cells showed up-regulation of NKG2D receptor activating ligands (H60a, H60b, H60c, Raet1a, Raet1b, Raet1c, Raet1d, Raet1e, and Ulbp1) and down-regulation of inhibitory MHC class I molecules H-2L and H-2K2 in BVE-Ctnnb1null tumor cells. In vitro cytotoxicity assay demonstrated that BVE-Ctnnb1wt tumor cells were resistant to NK cell-mediated cytotoxicity, whereas BVE-Ctnnb1null tumor cells were sensitive to NK cell-mediated killing. Furthermore, the overexpression of any one of these NKG2D ligands in the BVE-Ctnnb1wt cell line resulted in a significant reduction of tumor growth in nude mice. Conclusions: Our results indicate that active ß-catenin signaling inhibits NK cell-mediated immune responses against thyroid cancer cells. Targeting the ß-catenin signaling pathway may have significant therapeutic benefits for BRAF-mutant thyroid cancer by not only inhibiting tumor growth but also enhancing host immune surveillance.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Ratones , Animales , Ratones Desnudos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Regulación hacia Arriba , Proteínas Proto-Oncogénicas B-raf , Ligandos , Neoplasias de la Tiroides/patología , Cáncer Papilar Tiroideo/genética , Vía de Señalización Wnt/fisiología , Proteínas de la Membrana/metabolismo
6.
Int J Mol Sci ; 24(4)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835626

RESUMEN

Breast cancer (BC) is commonly diagnosed in women. BC cells are associated with altered metabolism, which is essential to support their energetic requirements, cellular proliferation, and continuous survival. The altered metabolism of BC cells is a result of the genetic abnormalities of BC cells. Risk factors can also enhance it, including age, lifestyle, hormone disturbances, etc. Other unknown BC-promoting risk factors are under scientific investigation. One of these investigated factors is the microbiome. However, whether the breast microbiome found in the BC tissue microenvironment can impact BC cells has not been studied. We hypothesized that E. coli, part of a normal breast microbiome with more presence in BC tissue, secretes metabolic molecules that could alter BC cells' metabolism to maintain their survival. Thus, we directly examined the impact of the E. coli secretome on the metabolism of BC cells in vitro. MDA-MB-231 cells, an in vitro model of aggressive triple-negative BC cells, were treated with the E. coli secretome at different time points, followed by untargeted metabolomics analyses via liquid chromatography-mass spectrometry to identify metabolic alterations in the treated BC cell lines. MDA-MB-231 cells that were not treated were used as controls. Moreover, metabolomic analyses were performed on the E. coli secretome to profile the most significant bacterial metabolites affecting the metabolism of the treated BC cell lines. The metabolomics results revealed about 15 metabolites that potentially have indirect roles in cancer metabolism that were secreted from E. coli in the culture media of MDA-MB-231 cells. The cells treated with the E. coli secretome showed 105 dysregulated cellular metabolites compared to controls. The dysregulated cellular metabolites were involved in the metabolism of fructose and mannose, sphingolipids, amino acids, fatty acids, amino sugar, nucleotide sugar, and pyrimidine, which are vital pathways required for the pathogenesis of BC. Our findings are the first to show that the E. coli secretome modulates the BC cells' energy metabolism, highlighting insights into the possibility of altered metabolic events in BC tissue in the actual BC tissue microenvironment that are potentially induced by the local bacteria. Our study provides metabolic data that could be as a basis for future studies searching for the underlying mechanisms mediated by bacteria and their secretome to alter the metabolism of BC cells.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Escherichia coli , Secretoma , Metabolómica/métodos , Metabolismo Energético , Microambiente Tumoral
7.
Semin Cancer Biol ; 87: 1-16, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36354097

RESUMEN

The interplay between microRNAs (miRNAs) and pluripotency transcription factors (TFs) orchestrates the acquisition of cancer stem cell (CSC) features during the course of malignant transformation, rendering them essential cancer cell dependencies and therapeutic vulnerabilities. In this review, we discuss emerging themes in tumor heterogeneity, including the clonal evolution and the CSC models and their implications in resistance to cancer therapies, and then provide thorough coverage on the roles played by key TFs in maintaining normal and malignant stem cell pluripotency and plasticity. In addition, we discuss the reciprocal interactions between miRNAs and MYC, OCT4, NANOG, SOX2, and KLF4 pluripotency TFs and their contributions to tumorigenesis. We provide our view on the potential to interfere with key miRNA-TF networks through the use of RNA-based therapeutics as single agents or in combination with other therapeutic strategies, to abrogate the CSC state and render tumor cells more responsive to standard and targeted therapies.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , MicroARNs/genética , Neoplasias/genética , Neoplasias/patología , Células Madre Neoplásicas/patología , Factores de Transcripción/genética
8.
Dev Biol ; 492: 25-36, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152869

RESUMEN

Fascin expression has commonly been observed in certain subtypes of breast cancer, where its expression is associated with poor clinical outcome. However, its role in normal mammary gland development has not been elucidated. Here, we used a fascin knockout mouse model to assess its role in normal mammary gland morphogenesis and lactation. Fascin knockout was not embryonically lethal, and its effect on the litter size or condition at birth was minimal. However, litter survival until the weaning stage significantly depended on fascin expression solely in the nursing dams. Accordingly, pups that nursed from fascin-/- dams had smaller milk spots in their abdomen, suggesting a lactation defect in the nursing dams. Mammary gland whole-mounts of pregnant and lactating fascin-/- mice showed significantly reduced side branching and alveologenesis. Despite a typical composition of basal, luminal, and stromal subsets of mammary cells and normal ductal architecture of myoepithelial and luminal layers, the percentage of alveolar progenitors (ALDH+) in fascin-/- epithelial fraction was significantly reduced. Further in-depth analyses of fascin-/- mammary glands showed a significant reduction in the expression of Elf5, the master regulator of alveologenesis, and a decrease in the activity of its downstream target p-STAT5. In agreement, there was a significant reduction in the expression of the milk proteins, whey acidic protein (WAP), and ß-casein in fascin-/- mammary glands. Collectively, our data demonstrate, for the first time, the physiological role of fascin in normal mammary gland lactogenesis, an addition that could reveal its contribution to breast cancer initiation and progression.


Asunto(s)
Glándulas Mamarias Animales , Neoplasias , Embarazo , Femenino , Ratones , Animales , Glándulas Mamarias Animales/metabolismo , Lactancia/fisiología , Ratones Noqueados , Neoplasias/metabolismo
9.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34959629

RESUMEN

Recent years have witnessed major progress in development of novel therapeutic agents such as chemotherapy, targeted therapy and immune checkpoint inhibitors for breast cancer. However, cancer-related death remains high especially in triple-negative breast cancer (TNBC) due limited therapeutic options. Development of targeted therapies for TNBC requires better understanding of biology and signaling networks that promote disease progression. Fascin, an actin bundling protein, was identified as a key regulator of many signaling pathways that contribute to breast cancer progression. Herein, fascin ShRNA was used to generate stable fascin knockdown (FSCN1KD) in the MDA-MB-231 TNBC cell line and then were subjected to comprehensive mRNA and miRNA transcriptome analysis. We identified 129 upregulated and 114 downregulated mRNA transcripts, while 14 miRNAs were differentially expressed in FSCN1KD. Ingenuity pathway analysis (IPA) was used to predict the impact of differentially expressed transcripts on signaling pathways and functional categories and to construct miRNA-mRNA regulatory networks in the context of FSCN1 knockdown. Compared to FSCN1KD, fascin-positive (FSCN1CON) breast cancer cells showed enrichment in genes promoting cellular proliferation, migration, survival, DNA replication and repair. Expression of FSCN1high (identified in BRCA dataset from TCGA) in conjunction with elevated expression of the top 10 upregulated or decreased expression of the top 10 downregulated genes (identified in our FSCN1CON vs. FSCN1KD) correlates with worst survival outcome. Taken together, these data confirmed fascin's role in promoting TNBC progression, and identified a novel opportunity for therapeutic interventions via targeting those FSCN1-related transcripts.

10.
Antibodies (Basel) ; 10(3)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206205

RESUMEN

PURPOSE: Response to anti-PD-L1/PD-1 immunotherapy correlates with PD-L1 expression in breast cancer. However, the prevalence of PD-L1 positive breast cancer is variable, which could be due to differences in the population/cohort of patients tested or the preservation/detection technology used. To investigate this variability, we examined the effect of two tissue preservation methods on PD-L1 immunohistochemical detection in breast cancer. METHODS: We compared PD-L1 expression in patient-matched frozen (FR) and formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer patients. PD-L1 expression was assessed using tumor proportion score (TPS, simply PD-L1 score), and case positivity was determined with PD-L1 score ≥5. RESULTS: In FFPE tissues, PD-L1 was positive in 7-10% of tested patients, depending on the antibody used. In patient-matched FR tissues, the same antibodies showed positive PD-L1 expression in 20-30% of cases. The impact of the antibody tested on the rate of PD-L1 positivity (% of PDL1 positive cases) was minor, as evident in the near perfect concordance between PD-L1 score obtained using the different antibodies whether tested in FR or FFPE tissues. However, there was a systematic drop by an average of 13-20% in the PD-L1 score obtained in FFPE tissues compared to their patient-matched FR tissues. CONCLUSIONS: In the tested patient-matched cohort, there was consistently a higher PD-L1 score in FR than FFPE tissues, regardless of the antibody used, demonstrating a significant effect on PD-L1 detection due to the preservation method. These findings should inspire further work to improve the sensitivity of PD-L1 detection and possibly search for more sensitive antibodies in FFPE tissues.

11.
Mol Cancer Ther ; 20(9): 1603-1613, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224366

RESUMEN

BRAFV600E mutation is the most frequent genetic alteration in papillary thyroid cancer (PTC). ß-Catenin (Ctnnb1) is a key downstream component of canonical Wnt signaling pathway and is frequently overexpressed in PTC. BRAF V600E-driven tumors have been speculated to rely on Wnt/ß-catenin signaling to sustain its growth, although many details remain to be elucidated. In this study, we investigated the role of ß-catenin in BrafV600E -driven thyroid cancer in a transgenic mouse model. In Braf V600E mice with wild-type (WT) Ctnnb1 (BVE-Ctnnb1WT or BVE), overexpression of ß-catenin was observed in thyroid tumors. In Braf V600E mice with Ctnnb1 knockout (BVE-Ctnnb1null), thyroid tumor growth was slowed with significant reduction in papillary architecture. This was associated with increased expression of genes involved in thyroid hormone synthesis, elevated 124iodine uptake, and serum T4. The survival of BVE-Ctnnb1null mice was increased by more than 50% during 14-month observation. Mechanistically, downregulation of MAPK, PI3K/Akt, and TGFß pathways and loss of epithelial-mesenchymal transition (EMT) were demonstrated in the BVE-Ctnnb1null tumors. Treatment with dual ß-catenin/KDM4A inhibitor PKF118-310 dramatically improved the sensitivity of BVE-Ctnnb1WT tumor cells to BRAFV600E inhibitor PLX4720, resulting in significant growth arrest and apoptosis in vitro, and tumor regression and differentiation in vivo These findings indicate that ß-catenin signaling plays an important role in thyroid cancer growth and resistance to BRAFV600E inhibitors. Simultaneously targeting both Wnt/ß-catenin and MAPK signaling pathways may achieve better therapeutic outcome in BRAFV600E inhibitor-resistant and/or radioiodine-refractory thyroid cancer.


Asunto(s)
Indoles/farmacología , Mutación , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Cáncer Papilar Tiroideo/prevención & control , Neoplasias de la Tiroides/prevención & control , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/fisiología , Animales , Diferenciación Celular , Transición Epitelial-Mesenquimal , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas B-raf/genética , Cáncer Papilar Tiroideo/etiología , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/etiología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología
12.
Front Oncol ; 10: 440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373510

RESUMEN

Cancer stem cells (CSCs), a rare population of tumor cells with high self-renewability potential, have gained increasing attention due to their contribution to chemoresistance and metastasis. We have previously demonstrated a critical role for the actin-bundling protein (fascin) in mediating breast cancer chemoresistance through activation of focal adhesion kinase (FAK). The latter is known to trigger the ß-catenin signaling pathway. Whether fascin activation of FAK would ultimately trigger ß-catenin signaling pathway has not been elucidated. Here, we assessed the effect of fascin manipulation in breast cancer cells on triggering ß-catenin downstream targets and its dependence on FAK. Gain and loss of fascin expression showed its direct effect on the constitutive expression of ß-catenin downstream targets and enhancement of self-renewability. In addition, fascin was essential for glycogen synthase kinase 3ß inhibitor-mediated inducible expression and function of the ß-catenin downstream targets. Importantly, fascin-mediated constitutive and inducible expression of ß-catenin downstream targets, as well as its subsequent effect on CSC function, was at least partially FAK dependent. To assess the clinical relevance of the in vitro findings, we evaluated the consequence of fascin, FAK, and ß-catenin downstream target coexpression on the outcome of breast cancer patient survival. Patients with coexpression of fascinhigh and FAKhigh or high ß-catenin downstream targets showed the worst survival outcome, whereas in fascinlow, patient coexpression of FAKhigh or high ß-catenin targets had less significant effect on the survival. Altogether, our data demonstrated the critical role of fascin-mediated ß-catenin activation and its dependence on intact FAK signaling to promote breast CSC function. These findings suggest that targeting of fascin-FAK-ß-catenin axis may provide a novel therapeutic approach for eradication of breast cancer from the root.

13.
Oncoimmunology ; 9(1): 1729299, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32313717

RESUMEN

The T-cell inhibitory molecule PD-L1 is expressed on a fraction of breast cancer cells. The distribution of PD-L1 on the different subpopulations of breast cancer cells is not well-defined. Our aim was to study the expression level of PD-L1 on breast cancer stem-like (CSC-like) cells and their differentiated-like counterparts. We used multi-parametric flow cytometry to measure PD-L1 expression in different subpopulations of breast cancer cells. Pathway inhibitors, quantitative immunofluorescence, cell sorting, and western blot were used to investigate the underlying mechanism of PD-L1 upregulation in CSC-like cells. Specifically, PD-L1 was overexpressed up to three folds on breast CSC-like cells compared with more differentiated-like cancer cells. Functional in vitro and in vivo assays show higher stemness of PD-L1hi as compared with PD-L1lo cells. Among different pathways examined, PD-L1 expression on CSCs was partly dependant on Notch, and/or PI3K/AKT pathway activation. The effect of Notch inhibitors on PD-L1 overexpression in CSCs was completely abrogated upon mTOR knockdown. Specific knockdown of different Notch receptors shows Notch3 as a mediator for PD-L1 overexpression on CSCs and important for maintaining their stemness. Indeed, Notch3 was found to be overexpressed on PD-L1hi cells and specific knockdown of Notch3 abolished the effect of notch inhibitors and ligands on PD-L1 expression as well as mTOR activation. Our data demonstrated that overexpression of PD-L1 on CSCs is partly mediated by the notch pathway through Notch3/mTOR axis. We propose that these findings will help in a better design of anti-PD-L1 combination therapies to treat breast cancer effectively.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Antígeno B7-H1/genética , Neoplasias de la Mama/genética , Femenino , Humanos , Células Madre Neoplásicas , Fosfatidilinositol 3-Quinasas/genética , Receptor Notch3/genética , Serina-Treonina Quinasas TOR/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-31700522

RESUMEN

BACKGROUND: Monocytes play an important role in immune and inflammatory diseases and monocyte subsets are predictors of disease in certain conditions. Expression of the chemokine receptors, CCR2 and CX3CR1 on monocyte subsets relates to their function and can be used in their characterization. Our objective was to determine whether CD14, CD16, CCR2 and CX3CR1 on monocyte subsets are potential indicators of asthma severity. METHODS: Blood samples were collected from Saudi Arabian patients with asthma and normal healthy individuals. Six-color flow-cytometry phenotypic analysis was used to identify human blood monocyte subsets, based on their expression of CD14 and CD16 following CD45 gating. Expression of CCR2 and CX3CR1 was analysed on classical (CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) subsets and correlated with disease severity. RESULTS: We demonstrated a significant increase in percentage of total CD45-positive monocytes in the blood of patients with severe asthma, but the proportion of the individual monocyte subsets was not significantly changed when patients with mild, moderate and severe asthma were compared with healthy individuals. CD16 expression (mean fluorescence intensity, MFI) was decreased on intermediate and non-classical subsets in patients with severe asthma compared to healthy controls. CX3CR1 expression was also lower, with a lower percentage of cells expressing CX3CR1 in the non-classical CD14+CD16++ subset in all patients with asthma and this was inversely related to the percentage of cells expressing CCR2. CONCLUSIONS: CCR2 expression on monocytes indicated a tendency toward more phagocytic monocytes in patients with asthma. The differential expression of CD16, CX3CR1 and CCR2 on monocyte subsets in peripheral blood indicates modulation of the inflammatory response and suggests a role for monocytes in asthma pathogenesis.

15.
EBioMedicine ; 43: 211-224, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31085100

RESUMEN

BACKGROUND: A newly developed drug trastuzumab emtansine (T-DM1) has improved the survival of breast cancer (BC) patients. Despite an impressive initial clinical response, a subgroup of patient develop resistance and present therapeutic challenges. The underlying resistance mechanisms are not fully investigated. We report that T-DM1 treatment modulates the expression of ROR1 (type 1 receptor tyrosine kinase-like orphan receptor) and induces self-renewal of cancer stem cells (CSCs) leading to therapeutic resistance. METHODS: Using BC patient tumor samples, and BC cell lines we gained insight into the T-DM1 treatment induced ROR1 overexpression and resistance. In vitro sphere forming assays and in vivo extreme dilution assays were employed to analyze the stemness and self-renewal capacity of the cells. A series of molecular expression and protein assays including qRT-PCR, FACS-sorting, ELISA, immunostaining, Western blotting were used to provide evidence. FINDINGS: Exposure of cells to T-DM1 shifted ROR1 expression from low to high, enriched within the CSC subpopulation, coincident with increased Bmi1 and stemness factors. T-DM1 induced ROR1 cells showed high spheroid and tumor forming efficiency in vitro and in an animal model exhibiting shorter tumor-free time. Mechanistically, the overexpression of ROR1 is partly induced by the activation of YAP1 and its target genes. Silencing of ROR1 and YAP1 by pharmacologic inhibitors and/or sh/siRNA inhibited spheroid formation, the initiation of tumors and the capacity for self-renewal and ROR1 overexpression. INTERPRETATIONS: The results presented here indicate that simultaneous targeting of ROR1 and YAP1 may suppress CSC self-renewal efficacy and inhibit tumor progression in BC. In this manner such treatments may overcome the T-DM1 mediated therapeutic resistance and improve clinical outcome. FUND: This study was supported by Neurogen Technologies for interdisciplinary research.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos Inmunológicos/farmacología , Resistencia a Antineoplásicos/genética , Inmunoconjugados/farmacología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptor ErbB-2/antagonistas & inhibidores , Biomarcadores , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Vía de Señalización Hippo , Humanos , Inmunohistoquímica , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Pronóstico , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Factores de Transcripción , Proteínas Señalizadoras YAP
16.
Int J Cancer ; 145(3): 830-841, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30719702

RESUMEN

Breast cancer remains the second cause of tumor-related mortality in women worldwide mainly due to chemoresistance and metastasis. The chemoresistance and metastasis are attributed to a rare subpopulation with enriched stem-like characteristics, thus called Cancer Stem Cells (CSCs). We have previously reported aberrant expression of the actin-bundling protein (fascin) in breast cancer cells, which enhances their chemoresistance, metastasis and enriches CSC population. The intracellular mechanisms that link fascin with its downstream effectors are not fully elucidated. Here, loss and gain of function approaches in two different breast cancer models were used to understand how fascin promotes disease progression. Importantly, findings were aligned with expression data from actual breast cancer patients. Expression profiling of a large breast cancer dataset (TCGA, 530 patients) showed statistically significant correlation between fascin expression and a key adherence molecule, ß1 integrin (ITGB1). In vitro manipulation of fascin expression in breast cancer cells exhibited its direct effect on ITGB1 expression. Fascin-mediated regulation of ITGB1 was critical for several breast cancer cell functions including adhesion to different extracellular matrix, self-renewability and chemoresistance. Importantly, there was a significant relationship between fascin and ITGB1 co-expression and short disease-free as well as overall survival in chemo-treated breast cancer patients. This novel role of fascin effect on ITGB1 expression and its outcome on cell self-renewability and chemoresistance strongly encourages for dual targeting of fascin-ITGB1 axis as a therapeutic approach to halt breast cancer progression and eradicate it from the root.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas Portadoras/biosíntesis , Integrina beta1/biosíntesis , Proteínas de Microfilamentos/biosíntesis , Células Madre Neoplásicas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Integrina beta1/genética , Integrina beta1/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Células Madre Neoplásicas/metabolismo , Análisis de Supervivencia , Regulación hacia Arriba
17.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30038057

RESUMEN

Asthma is a chronic inflammatory disorder associated with airway hyper-responsiveness. Although a number of studies have investigated asthma at the molecular level, the molecular immune signatures associated with asthma severity or with the response to corticosteroids are still being unraveled. The present study integrated four asthma-related gene expression datasets from the Gene Expression Omnibus and identified immune-gene signatures associated with asthma development, severity, or response to treatment. Normal and mild asthmatic patients clustered separately from the severe asthma group, suggesting substantial progression-related changes in gene expression. Pathway analysis of up-regulated severe asthma-related genes identified multiple cellular processes, such as polymorphism, T-cell development, and transforming growth factor-ß signaling. Comparing gene expression profiles of bronchoalveolar lavage cells in response to corticosteroid treatment, showed substantial reductions in genes related to the inflammatory response, including tumor necrosis factor signaling in the corticosteroid sensitive versus resistant patients, suggesting a defective immune response to corticosteroids. The data highlight the multifactorial nature of asthma, but revealed no significant overlap with the gene expression profiles from different datasets interrogated in current studies. The presented profile suggests that genes involved in asthma progression are different from those involved in the response to corticosteroids and this could affect the clinical management of different groups of patients with asthma.


Asunto(s)
Asma/genética , Regulación de la Expresión Génica/genética , Hipersensibilidad/genética , Análisis por Micromatrices , Corticoesteroides/química , Corticoesteroides/genética , Asma/patología , Líquido del Lavado Bronquioalveolar/química , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Hipersensibilidad/patología , Masculino , Transducción de Señal/genética
18.
Int J Cancer ; 141(7): 1402-1412, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28614911

RESUMEN

The expression of PD-L1 in breast cancer is associated with estrogen receptor negativity, chemoresistance and epithelial-to-mesenchymal transition (EMT), all of which are common features of a highly tumorigenic subpopulation of cancer cells termed cancer stem cells (CSCs). Hitherto, the expression and intrinsic role of PD-L1 in the dynamics of breast CSCs has not been investigated. To address this issue, we used transcriptomic datasets, proteomics and several in vitro and in vivo assays. Expression profiling of a large breast cancer dataset (530 patients) showed statistically significant correlation (p < 0.0001, r = 0.36) between PD-L1 expression and stemness score of breast cancer. Specific knockdown of PD-L1 using ShRNA revealed its critical role in the expression of the embryonic stem cell transcriptional factors: OCT-4A, Nanog and the stemness factor, BMI1. Conversely, these factors could be induced upon PD-L1 ectopic expression in cells that are normally PD-L1 negative. Global proteomic analysis hinted for the central role of AKT in the biology of PD-L1 expressing cells. Indeed, PD-L1 positive effect on OCT-4A and Nanog was dependent on AKT activation. Most importantly, downregulation of PD-L1 compromised the self-renewal capability of breast CSCs in vitro and in vivo as shown by tumorsphere formation assay and extreme limiting dilution assay, respectively. This study demonstrates a novel role for PD-L1 in sustaining stemness of breast cancer cells and identifies the subpopulation and its associated molecular pathways that would be targeted upon anti-PD-L1 therapy.


Asunto(s)
Antígeno B7-H1/fisiología , Neoplasias de la Mama/patología , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Antígeno B7-H1/metabolismo , Neoplasias de la Mama/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/fisiología , Fosforilación , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trasplante Heterólogo
19.
Stem Cells ; 34(12): 2799-2813, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27502039

RESUMEN

An emerging dogma shows that tumors are initiated and maintained by a subpopulation of cancer cells that hijack some stem cell features and thus referred to as "cancer stem cells" (CSCs). The exact mechanism that regulates the maintenance of CSC pool remains largely unknown. Fascin is an actin-bundling protein that we have previously demonstrated to be a major regulator of breast cancer chemoresistance and metastasis, two cardinal features of CSCs. Here, we manipulated fascin expression in breast cancer cell lines and used several in vitro and in vivo approaches to examine the relationship between fascin expression and breast CSCs. Fascin knockdown significantly reduced stem cell-like phenotype (CD44hi /CD24lo and ALDH+ ) and reversal of epithelial to mesenchymal transition. Interestingly, expression of the embryonic stem cell transcriptional factors (Oct4, Nanog, Sox2, and Klf4) was significantly reduced when fascin expression was down-regulated. Functionally, fascin-knockdown cells were less competent in forming colonies and tumorspheres, consistent with lower basal self-renewal activity and higher susceptibility to chemotherapy. Fascin effect on CSC chemoresistance and self-renewability was associated with Notch signaling. Activation of Notch induced the relevant downstream targets predominantly in the fascin-positive cells. Limiting-dilution xenotransplantation assay showed higher frequency of tumor-initiating cells in the fascin-positive group. Collectively, our data demonstrated fascin as a critical regulator of breast CSC pool at least partially via activation of the Notch self-renewal signaling pathway and modification of the expression embryonic transcriptional factors. Targeting fascin may halt CSCs and thus presents a novel therapeutic approach for effective treatment of breast cancer. Stem Cells 2016;34:2799-2813 Video Highlight: https://youtu.be/GxS4fJ_Ow-o.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Portadoras/metabolismo , Autorrenovación de las Células , Proteínas de Microfilamentos/metabolismo , Células Madre Neoplásicas/patología , Receptores Notch/metabolismo , Transducción de Señal , Animales , Antígenos CD/metabolismo , Neoplasias de la Mama/genética , Proteínas Portadoras/genética , Línea Celular Tumoral , Autorrenovación de las Células/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones Desnudos , Proteínas de Microfilamentos/genética , Células Madre Neoplásicas/metabolismo , Fenotipo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Ensayo de Tumor de Célula Madre
20.
Mol Cancer ; 14: 149, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26245467

RESUMEN

BACKGROUND: The T-cell inhibitory molecule PD-L1 (B7-H1, CD274) is expressed on tumor cells of a subset of breast cancer patients. However, the mechanism that regulates PD-L1 expression in this group of patients is still not well-identified. METHODS: We have used loss and gain of function gene manipulation approach, multi-parametric flow cytometry, large scale gene expression dataset analysis and immunohistochemistry of breast cancer tissue sections. RESULTS: Induction of epithelial to mesenchymal transition (EMT) in human mammary epithelial cells upregulated PD-L1 expression, which was dependent mainly on the activation of the PI3K/AKT pathway. Interestingly, gene expression signatures available from large cohort of breast tumors showed a significant correlation between EMT score and the PD-L1 mRNA level (p < 0.001). Strikingly, very strong association (p < 0.0001) was found between PD-L1 expression and claudin-low subset of breast cancer, which is known to have high EMT score. On the protein level, significant correlation was found between PD-L1 expression and standard markers of EMT (p = 0.005) in 67 breast cancer patients. Importantly, specific downregulation of PD-L1 in claudin-low breast cancer cells showed signs of EMT reversal as manifested by CD44 and Vimentin downregulation and CD24 upregulation. CONCLUSIONS: We have demonstrated a bidirectional effect between EMT status and PD-L1 expression especially in claudin-low subtype of breast cancer cells. Our findings highlights the potential dual benefit of anti-PD-L1 particularly in this subset of breast cancer patients that will likely benefit more from anti-PD-L1 targeted therapy as well as in monitoring biological changes upon treatment.


Asunto(s)
Antígeno B7-H1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Claudinas/genética , Claudinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...