Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet World ; 17(2): 462-469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38595658

RESUMEN

Background and Aim: Probiotics can be used as an alternative to antibiotic growth promoters because antibiotics are prohibited worldwide. This study investigated the potential combination of probiotics and acidifiers to improve feed intake, productive performance, egg mass, and egg yolk chemical composition of late-laying quail for the health of humans who consume quail products. Materials and Methods: One hundred laying quails were divided into 4 × 5 treatments, with each group consisting of five replications. The adaptation period was 2 weeks, and the treatment was continued for 4 weeks. Probiotics and acidifiers were added to drinking water and incorporated into the diet. Feed and water were provided ad libitum. Treatment duration (1 week, 2 weeks, 3 weeks, and 4 weeks) and additional feed treatment (control, probiotic 2% + 0.5% acidifier, probiotic 2% + 1% acidifier, probiotic 4% + 0.5% acidifier, and probiotic 4% + 1% acidifier, respectively). Results: Significant differences (p < 0.05) were observed in feed intake, quail day production, feed efficiency, egg mass in laying quails, and the chemical composition of egg yolk with probiotics and acidifiers in late-laying quails. Conclusion: The combination of probiotics and acidifiers can improve feed intake, production performance, egg mass, and egg yolk chemical composition in late-laying quails.

2.
Vet World ; 16(7): 1461-1467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621531

RESUMEN

Background and Aim: Antibiotics that increase growth have long been employed as a component of chicken growth. Long-term, unchecked usage may lead to microbial imbalance, resistance, and immune system suppression. Probiotics are a suitable and secure feed additive that may be provided as a solution. The objective of this research was to ascertain the effects of dietary multistrain probiotics (Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus plantarum) on the morphology (length and weight) of reproductive organs and productivity performance of laying hens during the early stage of laying. Materials and Methods: One hundred ISA Brown commercial layer chicks of the same body weight (BW) that were 5 days old were divided into five treatments, each with four replicates and four chicks in each duplicate. There were five different dietary interventions: (T1) 100% base feed; (T2) base feed with 2.5 g of antibiotic growth promoter/kg feed; (T3) base feed plus probiotics; (T4) base feed at 1 mL/kg with probiotics; and (T5) base feed with probiotics, 3 mL/kg feed, 5 mL/kg of feed. The parameters observed were performance, internal and exterior egg quality, and the morphology (length and weight) of laying hens' reproductive organs. Results: Probiotic supplementation (L. acidophilus, Bifidobacterium, and L. plantarum) significantly affected the BW, feed intake, egg weight, yolk index, albumin index, Haugh unit, egg height, egg width, and morphology (length and weight) of laying hens' reproductive organs compared to the control group (basic feed). In addition, there was no discernible difference between treatment groups in theeggshell weight and thickness variables across all treatment groups. Conclusion: When laying hens were between 17 and 21 weeks old, during the early laying period, microbiota inoculum supplements (L. acidophilus, Bifidobacterium, and L. plantarum) increased growth, the quality of the internal and external layers' eggs, and the morphology of the laying hens' reproductive organs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...