Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38254663

RESUMEN

The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.


Asunto(s)
Quinasa de la Caseína I , Conexina 43 , Miocitos Cardíacos , Adulto , Animales , Humanos , Ratones , Quinasa de la Caseína I/genética , Conexina 43/genética , Conexinas , Uniones Comunicantes , Ratones Transgénicos , Mutación
2.
Front Cardiovasc Med ; 10: 1096884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283579

RESUMEN

Scalable and high-throughput electrophysiological measurement systems are necessary to accelerate the elucidation of cardiac diseases in drug development. Optical mapping is the primary method of simultaneously measuring several key electrophysiological parameters, such as action potentials, intracellular free calcium and conduction velocity, at high spatiotemporal resolution. This tool has been applied to isolated whole-hearts, whole-hearts in-vivo, tissue-slices and cardiac monolayers/tissue-constructs. Although optical mapping of all of these substrates have contributed to our understanding of ion-channels and fibrillation dynamics, cardiac monolayers/tissue-constructs are scalable macroscopic substrates that are particularly amenable to high-throughput interrogation. Here, we describe and validate a scalable and fully-automated monolayer optical mapping robot that requires no human intervention and with reasonable costs. As a proof-of-principle demonstration, we performed parallelized macroscopic optical mapping of calcium dynamics in the well-established neonatal-rat-ventricular-myocyte monolayer plated on standard 35 mm dishes. Given the advancements in regenerative and personalized medicine, we also performed parallelized macroscopic optical mapping of voltage dynamics in human pluripotent stem cell-derived cardiomyocyte monolayers using a genetically encoded voltage indictor and a commonly-used voltage sensitive dye to demonstrate the versatility of our system.

3.
Cell Signal ; 98: 110408, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842171

RESUMEN

Freeze-tolerant species, such as wood frogs (Rana sylvatica), are susceptible to multiple co-occurring stresses that they must overcome to survive. Freezing is accompanied by mechanical stress and dehydration due to ice crystal formation in the extracellular space, ischemia/anoxia due to interruption in blood flood, and hyperglycemia due to cryoprotective measures. Wood frogs can survive dehydration, anoxia, and high glucose stress independently of freezing, thereby creating a multifactorial model for studying freeze-tolerance. Oxidative stress and high glucose levels favors the production of pro-oxidant molecules and advanced glycation end product (AGE) adducts that could cause substantial cellular damage. In this study, the involvement of the high mobility group box 1 (HMGB1)-AGE/RAGE (receptor for AGE) axis and the regulation of ETS1 and EGR1-mediated angiogenic responses were investigated in liver of wood frogs expose to freeze/thaw, anoxia/reoxygenation and dehydration/rehydration treatments. HMGB1 and not AGE-adducts are likely to induce the activation of ETS1 and EGR1 via the RAGE pathway. The increase in nuclear localization of both ETS1 and EGR1, but not DNA binding activity in response to stress hints to a potential spatial and temporal regulation in inducing angiogenic factors. Freeze/thaw and dehydration/rehydration treatments increase the levels of both pro- and anti-angiogenic factors, perhaps to prepare for the distribution of cryoprotectants or enable the repair of damaged capillaries and wounds when needed. Overall, wood frogs appear to anticipate the need for angiogenesis in response to freezing and dehydration but not anoxic treatments, probably due to mechanical stress associated with the two former conditions.


Asunto(s)
Proteína HMGB1 , Inductores de la Angiogénesis/metabolismo , Animales , Deshidratación/metabolismo , Redes Reguladoras de Genes , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/genética , Proteína HMGB1/metabolismo , Hipoxia/metabolismo , Ranidae/genética , Ranidae/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-35460874

RESUMEN

The freeze-tolerant wood frog, Rana sylvatica, is one of the very few vertebrate species known to endure full body freezing in winter and thaw in early spring without any significant sign of damage. Once frozen, wood frogs show no cardiac or lung activity, brain function, or physical movement yet resume full physiological and biochemical functions within hours after thawing. The miraculous ability to tolerate such extreme stresses makes wood frogs an attractive model for identifying the molecular mechanisms that can promote freeze/thaw endurance. Recapitulating these pro-survival strategies in transplantable human cells and organs could improve viability post-thaw leading to better post-transplant outcomes, in addition to providing more time for adequate distribution of these transplantable materials across larger geographical areas. Indeed, several laboratories are beginning to mimic the pro-survival responses observed in wood frogs to preservation of human cells, tissues and organs and, to date, a few trials have been successful in extending preservation time prior to transplantation. In this review, we discuss the biology of the freeze-tolerant wood frog, current advances in biobanking based on these animals, and extend our discussion to future prospects for cryopreservation as an aid to regenerative medicine.


Asunto(s)
Bancos de Muestras Biológicas , Ranidae , Animales , Criopreservación , Congelación , Ranidae/fisiología , Estaciones del Año
5.
J Exp Zool A Ecol Integr Physiol ; 337(4): 337-345, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34951526

RESUMEN

Torpor is a heterothermic response that occurs in some animals to reduce metabolic expenditure. The speckled mousebird (Colius striatus) belongs to one of the few avian taxa possessing the capacity for pronounced torpor, entering a hypometabolic state with concomitant decreases in body temperature in response to reduced food access or elevated thermoregulatory energy requirements. The pyruvate dehydrogenase complex (PDC) is a crucial site regulating metabolism by bridging glycolysis and the Krebs cycle. Three highly conserved phosphorylation sites are found within the E1 enzyme of the complex that inhibit PDC activity and reduce the flow of carbohydrate substrates into the mitochondria. The current study demonstrates a marked increase in S232 phosphorylation during torpor in liver, heart, and skeletal muscle of C. striatus. The increase in S232 phosphorylation during torpor was particularly notable in skeletal muscle where levels were ~49-fold higher in torpid birds compared to controls. This was in contrast to the other two phosphorylation sites (S293 and S300) which remained consistently phosphorylated regardless of tissue. The relevant PDH kinase (PDHK1) known to phosphorylate S232 was found to be substantially upregulated (~5-fold change) in the muscle during torpor as well as increasing moderately in the liver (~2.2-fold increase). Additionally, in the heart, a slight (~23%) decrease in total PDH levels was noted. Taken together the phosphorylation changes in PDH suggest that inhibition of the complex is a common feature across several tissues in the mousebird during torpor and that this regulation is mediated at a specific residue.


Asunto(s)
Ácido Pirúvico , Letargo , Animales , Aves , Oxidorreductasas , Fosforilación
6.
Semin Cell Dev Biol ; 118: 163-171, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34053865

RESUMEN

Human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) represent an inexhaustible cell source for in vitro disease modeling, drug discovery and toxicity screening, and potential therapeutic applications. However, currently available differentiation protocols yield populations of hPSC-CMs with an immature phenotype similar to cardiomyocytes in the early fetal heart. In this review, we consider the developmental processes and signaling cues involved in normal human cardiac maturation, as well as how these insights might be applied to the specific maturation of hPSC-CMs. We summarize the state-of-the-art and relative merits of reported hPSC-CM maturation strategies including prolonged duration in culture, metabolic manipulation, treatment with soluble or substrate-based cues, and tissue engineering approaches. Finally, we review the evidence that hPSC-CMs mature after implantation in injured hearts as such in vivo remodeling will likely affect the safety and efficacy of a potential hPSC-based cardiac therapy.


Asunto(s)
Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Humanos
7.
Physiol Biochem Zool ; 94(3): 171-179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33830886

RESUMEN

AbstractThe limitations that hypoxia imparts on mitochondrial oxygen supply are circumvented by the activation of anaerobic metabolism and prosurvival mechanisms in hypoxia-tolerant animals. To deal with the hypoxia that jumbo squid (Dosidicus gigas) experience in the ocean's depth, they depress their metabolic rate by up to 52% relative to normoxic conditions. This is coupled with molecular reorganization to facilitate their daily descents into the ocean's oxygen minimum zone, where they face not only low oxygen levels but also higher pressures and colder frigid waters. Our current study explores the tissue-specific hypoxia responses of three central processes: (1) antioxidant enzymes responsible for defending against oxidative stress, (2) early apoptotic machinery that signals the activation of cell death, and (3) mitogen-activated protein kinases (MAPKs) that act as central regulators of numerous cellular processes. Luminex xMAP technology was used to assess protein levels and phosphorylation states under normoxic and hypoxic conditions in brains, branchial hearts, and mantle muscles. Hypoxic brains were found to activate apoptosis via upregulation of phospho-p38, phospho-p53, activated caspase 8, and activated caspase 9, whereas branchial hearts were the only tissue to show an increase in antioxidant enzyme levels. Hypoxic muscles seemed the least affected by hypoxia. Our results suggest that hypoxic squid do not undergo large dynamic changes in the phosphorylation states of key apoptotic and central MAPK factors, except for brains, suggesting that these mechanisms are involved in squid hypometabolic responses.


Asunto(s)
Antioxidantes/metabolismo , Apoptosis/fisiología , Decapodiformes/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neuronas/fisiología , Estrés Oxidativo/fisiología , Animales , Biomarcadores , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/metabolismo , Oxígeno/farmacología , Transducción de Señal
8.
Physiol Biochem Zool ; 94(3): 180-187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835909

RESUMEN

AbstractHibernation is a strategy used by some mammals to survive harsh winter conditions. Many small mammals, such as the little brown bat, Myotis lucifugus, enter a long-term state of hibernation characterized by a period of deep torpor that can range from days to weeks. Torpid bats undergo metabolic rate depression that not only results in physiological changes but also promotes biochemical changes that favor survival. The present study utilizes multiplex technology to assess key early apoptosis markers and a select group of antioxidant enzymes in muscle, heart, and liver in euthermic controls and torpid bats. Muscle showed a significant decrease in the proapoptotic c-Jun N-terminal kinase and p53 and the antioxidant enzyme catalase but a significant increase in peroxiredoxin 2 levels. The heart responded similarly, with most proapoptotic proteins (caspase 8/9 and p53) remaining at low levels, while the antiapoptotic Bcl-2 protein significantly increased during torpor. There was no significant change in the antioxidant enzymes measured during torpor in the heart compared with the controls. The liver showed increases in catalase and Mn superoxide dismutase 2 enzymes during torpor, which correlated with activation of select antiapoptotic proteins and suppression of levels of proapoptotic ones. Overall, our data demonstrate that antiapoptotic and antioxidant defense responses have organ-specific regulation during torpor in bats. The induction of key antioxidant enzymes and antiapoptotic proteins may function as protective mechanisms that are necessary for surviving torpor.


Asunto(s)
Quirópteros/fisiología , Regulación de la Expresión Génica/fisiología , Hibernación/fisiología , Animales , Antioxidantes/metabolismo , Hígado/metabolismo , Miocardio/metabolismo
9.
Cell Signal ; 75: 109763, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32871209

RESUMEN

Pronounced heterothermic responses are relatively rare among birds. Along with taxa such as hummingbirds and caprimulgids, the order Coliiformes (mousebirds) is known to possess the physiological capacity for torpor. During torpor, body temperature is greatly reduced and a bird becomes unresponsive to external stimuli until ambient temperatures return to more favorable conditions. Under such conditions, these birds are forced to rely only on their internal fuel storage for energy and show great reduction in metabolic rates by decreasing energy-expensive processes. This study investigated the role of the key insulin-Akt signaling kinase pathway involved in regulating energy metabolism and protein translation in the liver, kidney, heart, skeletal muscle, and brain of the speckled mousebird (Colius striatus). The degree of phosphorylation of well-conserved target residues with important regulatory function was examined in both the euthermic control and torpid birds. The results demonstrated marked differences in responses between the tissues with decreases in RPS6 S235/236 phosphorylation in the kidney (0.52 fold of euthermic) and muscle (0.29 fold of euthermic) as well as decreases in GS3K3ß S9 in muscle (0.60 fold of euthermic) and GSK3α S21 (0.71 fold of euthermic) phosphorylation in kidney during torpor, suggesting a downregulation of this pathway. Interestingly, the liver demonstrated an increase in RPS6 S235/236 (2.89 fold increase) and P70S6K T412 (1.44 fold increase) phosphorylation in the torpor group suggesting that protein translation is maintained in this tissue. This study demonstrates that avian torpor is a complex phenomenon and alterations in this signaling pathway follow a tissue specific pattern.


Asunto(s)
Aves/metabolismo , Metabolismo Energético , Riñón/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Letargo , Animales , Fosforilación , Biosíntesis de Proteínas , Temperatura
10.
Gene ; 761: 145039, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32777527

RESUMEN

The wood frog (Rana sylvatica) can tolerate full body freezing in winter. As a protective response, wood frogs dehydrate their cells and accumulate large quantities of glucose as an intracellular cryoprotectant. Freezing causes ischemia since blood delivery to organs is interrupted. Fascinatingly, wood frogs can tolerate dehydration, extreme hyperglycemia, and anoxia independently of freezing. In response to low oxygen levels, wood frogs strategically reduce their metabolic rates and allocate the finite amount of intracellular fuel available to pro-survival processes while reducing or interrupting all others. In this study, the involvement of advanced glycation end products (AGEs) and the high mobility group box 1 (HMGB1) protein in activating RAGE (AGE receptor) were investigated. The results show that freezing, anoxia and dehydration induced the expression of total HMGB1 and its acetylation in the heart. RAGE levels were induced in response to all stress conditions, which resulted in differential regulation of the ETS1 transcription factor. While the nuclear localization of total ETS1 was not affected, the DNA binding activity of total and its active form increased in response to freezing and dehydration but not in response to anoxia. Current results indicate that ETS1 acts as a transcriptional activator for peroxiredoxin 1 in response to freezing but acts as a transcriptional repressor of several nuclear-encoded mitochondrial genes in response to all stresses. Altogether, current results show that the HMGB1/RAGE axis may activate ETS1 and that this activation could result in both transcriptional activation and/or repression in a stress-dependent manner.


Asunto(s)
Mitocondrias/metabolismo , Miocardio/metabolismo , Ranidae/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Deshidratación/metabolismo , Congelación , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/fisiología , Proteína HMGB1/metabolismo , Proteína HMGB1/fisiología , Corazón/fisiología , Hipoxia/metabolismo , Oxígeno/metabolismo , Ranidae/genética , Receptor para Productos Finales de Glicación Avanzada/fisiología , Estrés Fisiológico/fisiología
11.
Exp Gerontol ; 134: 110889, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32114078

RESUMEN

Aging in most animals is an inevitable process that causes or is a result of physiological, biochemical, and molecular changes in the body, and has a strong influence on an organism's lifespan. Although advancement in medicine has allowed humans to live longer, the prevalence of age-associated medical complications is continuously burdening older adults worldwide. Current animal models used in research to study aging have provided novel information that has helped investigators understand the aging process; however, these models are limiting. Aging is a complex process that is regulated at multiple biological levels, and while a single manipulation in these models can provide information on a process, it is not enough to understand the global regulation of aging. Some mammalian hibernators live up to 9.8-times higher than their expected average lifespan, and new research attributes this increase to their ability to hibernate. A common theme amongst these mammalian hibernators is their ability to greatly reduce their metabolic rate to a fraction of their normal rate and initiate cytoprotective responses that enable their survival. Metabolic rate depression is strictly regulated at different biological levels in order to enable the animal to not only survive, but to also do so by relying mainly on their limited internal fuels. As such, understanding both the global and specific regulatory mechanisms used to promote survival during hibernation could, in theory, allow investigators to have a better understanding of the aging process. This can also allow pharmaceutical industries to find therapeutics that could delay or reverse age-associated medical complications and promote healthy aging and longevity in humans.

12.
Artículo en Inglés | MEDLINE | ID: mdl-31926299

RESUMEN

Naked mole rats (NMRs, Heterocephalus glaber) are among the most hypoxia-tolerant mammals known. They can reduce their metabolic rate (>85%) under severe hypoxia, remain moderately active and recover with no obvious signs of damage. Hence, NMRs are an excellent model for studying mammalian hypoxia tolerance. The current study characterized the involvement of posttranslational modifications in regulating the Akt/mTOR pathway that regulates protein synthesis, and the responses of key ribosomal proteins in order to assess tissue-specific responses to 4 h exposure to 7% O2 (compared to controls at 21% O2). Results showed a tissue-specific regulation of the Akt/mTOR pathway via differential phosphorylation. Relative amounts of p-TSC(S939) in brain and of p-TSC(S939), p-Akt(473) and p-PTEN(S380) in liver increased under hypoxia, whereas levels of IGF1R(Y1135/1136) in liver decreased. In skeletal muscle, levels of p-Akt(S473) and p-PTEN(S380) decreased during hypoxia, whereas lungs showed an increase in p-mTOR(S2884) content but a decrease in p-RPS6(S235-236) under the same conditions. Analysis of the phosphorylation states of ribosomal proteins revealed increases in p-4E-BP1(T37/46) content in brain and lungs under hypoxia, as well as a rise in total 4E-BP1 protein level in liver. Phosphorylated eIF-4B(S422) content also increased in liver while levels of p-eIF-2α(S51), and eIF-4E(S209) decreased during hypoxia in liver. Overall, hypoxia altered the Akt/mTOR pathway, which correlated with a general decrease in activity of the ribosomal protein biosynthesis machinery in muscle, lung, and brain of NMRs. However, the increase in eIF-4B in liver suggests the potential promotion of cap-independent mRNA translation mechanism operating under hypoxic stress.


Asunto(s)
Hipoxia/fisiopatología , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Masculino , Ratas Topo , Especificidad de Órganos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética
13.
Physiol Biochem Zool ; 93(1): 49-61, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31742477

RESUMEN

The freeze-tolerant wood frog, Rana sylvatica, is one of few vertebrate organisms that can tolerate freezing, with up to 70% of its total body water being converted into extracellular ice. Physiologically, wood frogs show no signs of muscle movement, breathing, heartbeat, or brain activity for several weeks or months at a time but emerge unharmed upon thawing. Given that wood frogs rely mainly on carbohydrate metabolism during freezing, the involvement of the carbohydrate-responsive element-binding protein (ChREBP) in response to freezing is of interest. In liver tissue, protein and transcript levels of ChREBP increased by 1.4±0.09-fold and 1.9±0.26-fold, respectively, and nuclear distribution and DNA-binding activity rose by 2.0±0.08-fold and 1.5±0.08-fold, respectively. This enhanced transcriptional activity of ChREBP was corroborated by increased transcript expression of select downstream genes of fatty acid synthase, pyruvate kinase, and stearoyl-CoA desaturase in liver tissue. While liver tissue displayed ChREBP activation, in muscle tissue, ChREBP protein levels, DNA-binding activity, and downstream gene targets were generally found to decrease or to remain unchanged during freezing. Overall, our results demonstrate that ChREBP regulates metabolism in a tissue-dependent manner during freezing, when its activity is required for liver tissue but not for skeletal muscle tissue in wood frogs.


Asunto(s)
Proteínas Anfibias/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Redes Reguladoras de Genes , Glucosa/metabolismo , Ranidae/fisiología , Transcripción Genética , Proteínas Anfibias/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Frío , Congelación , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ontario , ARN Mensajero/metabolismo , Ranidae/genética
14.
Int J Biol Macromol ; 132: 461-469, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30936008

RESUMEN

Dryophytes versicolor is one of the most extreme freeze-tolerant frogs from eastern North America. In this study, the mitochondrial genome of D. versicolor was sequenced to analyze the phylogenetic relationships among Hylidae and investigate mitochondrial gene expression in response to freezing and anoxia. The total length of the D. versicolor mitogenome is the longest known to date among the available family members of Hylidae. Both maximum likelihood (ML) and Bayesian inference (BI) analyses strongly supported D. versicolor as a sister clade to (D. japonica + D. ussuriensis) + (D. suweonensis + D. immaculata (KP212702)), and indicated that Dryophytes is monophyletic. Using the mitochondrial genome, gene expression analysis was performed using RT-qPCR in skeletal muscle samples, and determined that relative levels of D. versicolor COX2 increased by 2.40 ±â€¯0.23 fold in response to anoxia, but did not change with exposure to freezing. In addition, ND3 transcript levels decreased in response to anoxia but remained constant during freezing. By contrast, COX1 transcript levels decreased with exposure to freezing, but did not change under anoxic conditions. These results suggest that modulations of protein-coding mitochondrial genes of D. versicolor may play a role in the molecular response to freezing and anoxia tolerance.


Asunto(s)
Anuros/genética , Congelación , Genoma Mitocondrial/genética , Hipoxia/genética , Proteínas Mitocondriales/genética , Filogenia , Transcriptoma , Animales , Anuros/fisiología , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Cryobiology ; 86: 10-18, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30639451

RESUMEN

Wood frogs, Rana sylvatica, can undergo prolonged periods of whole body freezing during winter, locking as much as 65-70% of total body water into extracellular ice and imposing both anoxia and dehydration on their cells. Metabolic rate depression (MRD) is an adaptation used by R. sylvatica to survive these environmental stresses, where a finite amount of ATP generated through anaerobic metabolism is directed towards maintaining pro-survival functions, while most ATP-expensive cellular processes are temporarily reduced in function. Pyruvate dehydrogenase (PDH) is a vital metabolic enzyme that links anaerobic glycolysis to the aerobic TCA cycle and is an important regulatory site in MRD. PDH enzymatic activity is regulated via reversible protein phosphorylation in response to energetic demands of cells. This study explored the posttranslational regulation of PDH at three serine sites (S232, S293, S300) on the catalytic E1α subunit along with protein expression of four pyruvate dehydrogenase kinases (PDHK1-4) in response to 24 h Freezing, 8 h Thaw, 24 h Anoxia, and 4 h Recovery in the liver and skeletal muscle of R. sylvatica using Luminex multiplex technology and western immunoblotting. Overall, inhibitory regulation of PDH was evident during 24 h Freezing and 24 h Anoxia, which could indicate a notable reduction in glycoytic flux and carbon entry into the tricarboxylic acid cycle as part of MRD. Furthermore, the expression of PDHK1-4 and phosphorylation of PDH at S232, S293, and S300 were highly tissue and stress-specific, indicative of how different tissues respond differently to stress within the same organism.


Asunto(s)
Aclimatación/fisiología , Metabolismo Basal/fisiología , Congelación , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Ranidae/metabolismo , Animales , Criopreservación , Deshidratación/metabolismo , Regulación de la Expresión Génica/fisiología , Hipoxia/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Oxidación-Reducción , Fosforilación , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Complejo Piruvato Deshidrogenasa/genética , Estrés Fisiológico
16.
Cell Biochem Funct ; 36(8): 420-430, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30411386

RESUMEN

The wood frog, Lithobates sylvaticus (also known as Rana sylvatica), is used for studying natural freeze tolerance. These animals convert 65% to 70% of their total body water into extracellular ice and survive freezing for weeks in winter. Freezing interrupts oxygen delivery to organs; thus, wood frogs limit their ATP usage by depressing their metabolism and redirecting the available energy only to prosurvival processes. Here, we studied the nuclear factor of activated T cell (NFAT) transcription factor family in response to 24-hour anoxia, and 4-hour aerobic recovery in liver and skeletal muscle. Protein expression levels of NFATc1-c4, calcineurin A and glycogen synthase kinase 3ß (NFAT regulators), osteopontin, and atrial natriuretic peptide (ANP) (targets of NFATc3 and NFATc4, respectively) were measured by immunoblotting, and the DNA-binding activities of NFATc1-c4 were measured by DNA-protein interaction ELISAs. Results show that NFATc4, calcineurin, and ANP protein expression as well as NFATc4 DNA binding increased during anoxia in liver where calcineurin and ANP protein levels and NFATc4 DNA binding remaining high after aerobic recovery. Anoxia caused a significant increase in NFATc3 protein expression but not DNA-binding activity in muscle. Our results show that anoxia can increase NFATc4 transcriptional activity in liver, leading to the increase in expression of cytoprotective genes in the wood frog. Understanding the molecular mechanisms involved in mediating survival under anoxia/reoxygenation conditions in a naturally stress-tolerant model, such as the wood frog, provides insightful information on the prosurvival regulatory mechanisms involved in combating stress. This information will also further our understanding of metabolic rate depression and answer the question of how frogs tolerate prolonged periods of oxygen deprivation and resume to full function upon recovery without facing any detrimental side effects as other animals would.


Asunto(s)
Hipoxia , Factores de Transcripción NFATC/metabolismo , Estrés Fisiológico , Animales , Factor Natriurético Atrial/metabolismo , Calcineurina/metabolismo , ADN/metabolismo , Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Osteopontina/metabolismo , Unión Proteica , Ranidae
17.
PeerJ ; 6: e5062, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922517

RESUMEN

Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.

18.
Cryobiology ; 79: 43-49, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28947252

RESUMEN

Rana sylvatica, known as the wood frog, can survive extremely cold temperatures during winter by undergoing full-body freezing, where it tolerates freezing of 65-70% of its total body water. During freezing, cellular dehydration decreases damage to the cell by preventing ice crystallization. Challenged with many stresses, these animals are forced to develop physiological adaptations to osmoregulation and osmoprotection that are necessary to ensure their survival. The purpose of this study was to elucidate a potential mechanism by which the transcription factor, NFAT5, regulates the expression of three osmoregulatory proteins (aldose reductase, SMIT, and BGT-1). These three proteins control cellular concentrations of the organic osmolytes: betaine (BGT-1), myo-inositol (SMIT), and sorbitol (aldose reductase). We studied this mechanism during the freeze-thaw stress in R. sylvatica liver, kidney, and skeletal muscle. Protein expression of BGT-1, SMIT, aldose reductase, and NFAT5 were examined using immunoblotting. We identified that the NFAT5 pathway facilitated osmoregulation in a tissue-specific manner during freezing. In skeletal muscle, we demonstrated that NFAT5 upregulation in thawing led to increases in the protein levels of BGT-1. In liver, NFAT5 was upregulated during freezing, along with aldose reductase. Furthermore, neither of these patterns of expression were observed in kidney as none of these four proteins showed differential expression during freezing or thawing. Therefore, the NFAT5 osmoregulatory pathway appears to be tissue-specific. Our novel findings on a mechanism of osmoregulation in R. sylvatica highlight the importance of studying naturally stress-tolerant animals to identify novel pro-survival pathways.


Asunto(s)
Adaptación Fisiológica/genética , Deshidratación/metabolismo , Congelación/efectos adversos , Osmorregulación/genética , Presión Osmótica/fisiología , Ranidae/metabolismo , Aldehído Reductasa/biosíntesis , Animales , Betaína/metabolismo , Proteínas Portadoras/biosíntesis , Frío , Cristalización , Proteínas Transportadoras de GABA en la Membrana Plasmática , Regulación de la Expresión Génica , Proteínas de Choque Térmico/biosíntesis , Inositol/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Sorbitol/metabolismo , Simportadores/biosíntesis , Activación Transcripcional , Regulación hacia Arriba
19.
PeerJ ; 5: e2797, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28133564

RESUMEN

BACKGROUND: The wood frog, Rana sylvatica, tolerates freezing as a means of winter survival. Freezing is considered to be an ischemic/anoxic event in which oxygen delivery is significantly impaired. In addition, cellular dehydration occurs during freezing because water is lost to extracellular compartments in order to promote freezing. In order to prevent severe cell shrinkage and cell death, it is important for the wood frog to have adaptive mechanisms for osmoregulation. One important mechanism of cellular osmoregulation occurs through the cellular uptake/production of organic osmolytes like sorbitol, betaine, and myo-inositol. Betaine and myo-inositol are transported by the proteins BGT-1 and SMIT, respectively. Sorbitol on the other hand, is synthesized inside the cell by the enzyme aldose reductase. These three proteins are regulated at the transcriptional level by the transcription factor, NFAT5/TonEBP. Therefore, the objective of this study was to elucidate the role of NFAT5/TonEBP in regulating BGT-1, SMIT, and aldose reductase, during dehydration and anoxia in the wood frog muscle, liver, and kidney tissues. METHODS: Wood frogs were subjected to 24 h anoxia-4 h recovery and 40% dehydration-full rehydration experiments. Protein levels of NFAT5, BGT-1, SMIT, and aldose reductase were studied using immunoblotting in muscle, liver, and kidney tissues. RESULTS: Immunoblotting results demonstrated downregulations in NFAT5 protein levels in both liver and kidney tissues during anoxia (decreases by 41% and 44% relative to control for liver and kidney, respectively). Aldose reductase protein levels also decreased in both muscle and kidney tissues during anoxia (by 37% and 30% for muscle and kidney, respectively). On the other hand, BGT-1 levels increased during anoxia in muscle (0.9-fold compared to control) and kidney (1.1-fold). Under 40% dehydration, NFAT5 levels decreased in liver by 53%. Aldose reductase levels also decreased by 42% in dehydrated muscle, and by 35% in dehydrated liver. In contrast, BGT-1 levels increased by 1.4-fold in dehydrated liver. SMIT levels also increased in both dehydrated muscle and liver (both by 0.8-fold). DISCUSSION: Overall, we observed that osmoregulation through an NFAT5-mediated pathway is both tissue- and stress-specific. In both anoxia and dehydration, there appears to be a general reduction in NFAT5 levels resulting in decreased aldose reductase levels, however BGT-1 and SMIT levels still increase in certain tissues. Therefore, the regulation of osmoregulatory genes during dehydration and anoxia occurs beyond the transcriptional level, and it possibly involves RNA processing as well. These novel findings on the osmoregulatory mechanisms utilized by the wood frog advances our knowledge of osmoregulation during anoxia and dehydration. In addition, these findings highlight the importance of using this model to study molecular adaptations during stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...