Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Brain Sci ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38928576

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Oxidative stress may be a critical link between mitochondrial dysfunction and ASD as reactive oxygen species (ROS) generated from pro-oxidant environmental toxicants and activated immune cells can result in mitochondrial failure. Recently, mitochondrial dysfunction, autoimmunity, and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS: The relationship between lipid mediator markers linked to inflammation induction, such as phospholipase A2/cyclooxygenase-2 (PLA2/Cox-2), and the mitochondrial dysfunction marker anti-mitochondrial antibodies (AMA-M2), and anti-histone autoantibodies in the etiology of ASD was investigated in this study using combined receiver operating characteristic (ROC) curve analyses. This study also sought to identify the linear combination for a given set of markers that optimizes the partial area under ROC curves. This study included 40 age- and sex-matched controls and 40 ASD youngsters. The plasma of both groups was tested for PLA2/COX-2, AMA-M2, and anti-histone autoantibodies' levels using ELISA kits. ROC curves and logistic regression models were used in the statistical analysis. RESULTS: Using the integrated ROC curve analysis, a notable rise in the area under the curve was noticed. Additionally, the combined markers had markedly improved specificity and sensitivity. CONCLUSIONS: The current study suggested that measuring the predictive value of selected biomarkers related to mitochondrial dysfunction, autoimmunity, and lipid metabolism in children with ASD using a ROC curve analysis could lead to a better understanding of the etiological mechanism of ASD as well as its relationship with metabolism.

2.
Brain Sci ; 13(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38002535

RESUMEN

According to previous research, individuals with autism spectrum disorder (ASD) have lower levels of physical activity than their typically developed (TD) counterparts. There have been conflicting reports about physical activity (PA) levels in people with ASD. Given the conflicting evidence, further investigation is required. We believe that evaluating PA in individuals with ASD is critical in order to offer PA intervention plans aiming at increasing their health-related physical fitness on a daily, systematic, and individualized basis. In the current study, an ActiGraph monitor (GT3X+) was used to accurately measure PA and sedentary activity in 21 children with autism aged 6.43 ± 2.29 years and 30 TD children aged 7.2 ± 3.14 years. Our data indicated that while the light and moderate activity counts were not significantly different between the two groups, the vigorous activity was significantly higher in ASD compared to TD. This finding was attributed to ASD characteristic stereotypy and self-stimulating behaviors. The significantly higher vigorous PA is discussed in relation to altered neurochemistry, oxidative stress, and neuroinflammation as etiological mechanisms in ASD. This research provides a better understanding of the status of PA participation in individuals with ASD.

3.
Curr Med Chem ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031776

RESUMEN

Numerous studies demonstrated that the number of children with autism spectrum disorder (ASD) has increased remarkably in the past decade. A portion of ASD etiology, however, is attributed to environmental issues and genetic disorders. We highlighted a scoping review to principally evaluate the current information on mercury exposure in ASD children and to reveal knowledge gaps. Elevated porphyrins concentration in the urinary system related to mercury exposure, such as precoproporphyrin (prcP), coproporphyrin (cP), and pentacarboxyporphyrin (5cxP), was shown in comparison with controls. Moreover, high levels of urinary porphyrins have been elevated in response to heavy metal exposure. The related pattern (increased prcP, cP, and 5cxP) with Hg exposure may be used as biomarkers in the characteristics of ASD symptoms. However, this review highlighted the data gaps because the control groups were not genderand age-matched for ASD children.

4.
Toxics ; 11(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37755749

RESUMEN

Autism spectrum disorder (ASD) is a complex developmental disorder in children that results in abnormal communicative and verbal behaviors. Exposure to heavy metals plays a significant role in the pathogenesis or progression of ASD. Mercury compounds pose significant risk for the development of ASD as children are more exposed to environmental toxicants. Increased concentration of mercury compounds has been detected in different body fluids/tissues in ASD children, which suggests an association between mercury exposure and ASD. Thioredoxin1 (Trx1) and thioredoxin reductase1 (TrxR1) redox system plays a crucial role in detoxification of oxidants generated in different immune cells. However, the effect of methylmercury and the Nrf2 activator sulforaphane on the Trx1/TrxR1 antioxidant system in neutrophils of ASD subjects has not been studied previously. Therefore, this study examined the effect of methylmercury on Trx1/TrxR1 expression, TrxR activity, nitrotyrosine, and ROS in neutrophils of ASD and TDC subjects. Our study shows that Trx1/TrxR1 protein expression is dysregulated in ASD subjects as compared to the TDC group. Further, methylmercury treatment significantly inhibits the activity of TrxR in both ASD and TDC groups. Inhibition of TrxR by mercury is associated with upregulation of the Trx1 protein in TDC neutrophils but not in ASD neutrophils. Furthermore, ASD neutrophils have exaggerated ROS production after exposure to methylmercury, which is much greater in magnitude than TDC neutrophils. Sulforaphane reversed methylmercury-induced effects on neutrophils through Nrf2-mediated induction of the Trx1/TrxR1 system. These observations suggest that exposure to the environmental toxicant methylmercury may elevate systemic oxidative inflammation due to a dysregulated Trx1/TrxR1 redox system in the neutrophils of ASD subjects, which may play a role in the progression of ASD.

5.
Brain Sci ; 13(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37371450

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) encompasses a group of disorders characterized by difficulties with social interaction and repetitive behavior. The condition is supposed to originate from early shifts in brain development, while the underlying processes are unknown. Moreover, a considerable number of patients with ASD experience digestive difficulties. Metalloproteases (ADAMs) are a class of enzymes capable of cleaving membrane-bound proteins. Members of this family, ADAM17 and ADAM22, have the ability to cleave proteins like the pro-inflammatory cytokine TNF-ά and glutamate synaptic molecules, which are both engaged in neuro-inflammation and glutamate excitotoxicity as crucial etiological mechanisms in ASD. ADAM17 and ADAM22 may also have a role in ASD microbiota-gut-brain axis connections by regulating immunological and inflammatory responses in the intestinal tract. SUBJECTS AND METHODS: Using ELISA kits, the plasma levels of ADAM17 and ADAM22 were compared in 40 children with ASD and 40 typically developing children. All of the autistic participants' childhood autism rating scores (CARS), social responsiveness scales (SRS), and short sensory profiles (SSP) were evaluated as indicators of ASD severity. RESULTS: Our results showed that plasma levels of ADAM17 were significantly lower in ASD children than in control children, while ADAM22 demonstrated non-significantly lower levels. Our data also indicate that while ADAM17 correlates significantly with age, ADAM22 correlates significantly with CARS as a marker of ASD severity. CONCLUSIONS: Our interpreted data showed that alteration in ADAM17 and ADAM22 might be associated with glutamate excitotoxicity, neuroinflammation, and altered gut microbiota as etiological mechanisms of ASD and could be an indicator of the severity of the disorder.

6.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108638

RESUMEN

Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Preescolar , Interleucina-17/metabolismo , Regulación hacia Arriba , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Citocinas/metabolismo , Receptores de Quimiocina/metabolismo , Factores de Transcripción/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , ARN Mensajero/metabolismo
7.
Metabolites ; 13(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984898

RESUMEN

Autism spectrum disorder (ASD) is a multidimensional disorder in which environmental, immune, and genetic factors act in concert to play a crucial role. ASD is characterized by social interaction/communication impairments and stereotypical behavioral patterns. Epigenetic modifications are known to regulate genetic expression through various mechanisms. One such mechanism is DNA methylation, which is regulated by DNA methyltransferases (DNMTs). DNMT transfers methyl groups onto the fifth carbon atom of the cytosine nucleotide, thus converting it into 5-methylcytosine (5mC) in the promoter region of the DNA. Disruptions in methylation patterns of DNA are usually associated with modulation of genetic expression. Environmental pollutants such as the plasticizer Di(2-ethylhexyl) phthalate (DEHP) have been reported to affect epigenetic mechanisms; however, whether DEHP modulates DNMT1 expression, DNA methylation, and inflammatory mediators in the neutrophils of ASD subjects has not previously been investigated. Hence, this investigation focused on the role of DNMT1 and overall DNA methylation in relation to inflammatory mediators (CCR2, MCP-1) in the neutrophils of children with ASD and typically developing healthy children (TDC). Further, the effect of DEHP on overall DNA methylation, DNMT1, CCR2, and MCP-1 in the neutrophils was explored. Our results show that the neutrophils of ASD subjects have diminished DNMT1 expression, which is associated with hypomethylation of DNA and increased inflammatory mediators such as CCR2 and MCP-1. DEHP further causes downregulation of DNMT1 expression in the neutrophils of ASD subjects, probably through oxidative inflammation, as antioxidant treatment led to reversal of a DEHP-induced reduction in DNMT1. These data highlight the importance of the environmental pollutant DEHP in the modification of epigenetic machinery such as DNA methylation in the neutrophils of ASD subjects.

8.
Metabolites ; 13(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36837907

RESUMEN

Autism spectrum disorder (ASD) is a neuropsychiatric childhood disorder that affects social skill and language development, and is characterized by persistent stereotypic behaviors, restricted social interests, and impaired language/social skills. ASD subjects have dysregulated immune responses due to impairment in inflammatory and antioxidant signaling in immune cells, such as T cells. Thioredoxin reductase-1 (TrxR1) and thioredoxin-1 (Trx1) play a crucial role in the maintenance of redox equilibrium in several immune cells, including T cells. T-cell apoptosis plays a crucial role in the pathogenesis of several inflammatory diseases. However, it remains to be explored how the TrxR1/Trx1 redox couple affects T-cells apoptosis in ASD and typically developing control (TDC) groups. Therefore, this single-center cross-sectional study explored the expression/activity of TrxR1/Trx1, and Bcl2, 7-AAD/annexin V immunostaining in T cells of ASD (n = 25) and TDC (n = 22) groups. Further, effects of the LPS were determined on apoptosis in TDC and ASD T cells. Our data show that T cells have increased TrxR1 expression, while having decreased Trx1 expression in the ASD group. Further, TrxR enzymatic activity was also elevated in T cells of the ASD group. Furthermore, T cells of the ASD group had a decreased Bcl2 expression and an increased % of annexin V immunostaining. Treatment of T cells with LPS caused greater apoptosis in the ASD group than the TDC group, with same treatment. These data reveal that the redox couple TrxR1/Trx1 is dysregulated in T cells of ASD subjects, which is associated with decreased Bcl2 expression and increased apoptosis. This may lead to decreased survival of T cells in ASD subjects during chronic inflammation. Future studies should investigate environmental factors, such as gut dysbiosis and pollutants, that may cause abnormal immune responses in the T cells of ASD subjects due to chronic inflammation.

11.
Int Immunopharmacol ; 106: 108619, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35183033

RESUMEN

Autism spectrum disorder (ASD) is characterized by constellation of impaired behaviors that include deficits in social interaction/communication and the presence of restricted/repetitive behavioral patterns. Both genetic component and environmental factors are thought to play a key role in the initiation and progression of ASD. Several environmental factors such as heavy metals and plasticizers are known to affect the progression of ASD. One of the most common pollutants in the environment today is di-2-ethylhexyl phthalate (DEHP). DEHP is utilized as a plasticizer in several household and office materials which range from medical devices to plastic toys. Children usually get exposed to DEHP at an early age through use of plastic toys and other plastic materials. Nuclear factor erythroid 2 (NFE2)-relatedfactor-2 (Nrf2) is a master redox regulator as it controls transcription of several antioxidant genes. DEHP has been reported to cause dysregulation in Nrf2 signaling in vitro/in vivo and ASD subjects also exhibit oxidant-antioxidant imbalance.Therefore, this study attempted to delineate the effect of DEHP on Nrf2 signaling in neutrophils of ASD and typically developing healthy children (TDC) in vitro. Our data display that neutrophils of ASD subjects have dysregulated Nrf2 and hemeoxygenase-1 (HO-1) expression as compared to TDC subjects. DEHP treatment leads to elevation of oxidant stress in neutrophils of both ASD and TDC subjects, however TDC neutrophils have better antioxidant response to mitigate oxidative stress. This is depicted by enhancement of Nrf2/HO-1 signaling in TDC neutrophils in response to DEHP whereas ASD neutrophils fail to do so. These results suggest that plasticizer, DEHP may cause further dysregulation in Nrf2 signaling which may promote progression of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Dietilhexil Ftalato , Niño , Dietilhexil Ftalato/toxicidad , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Neutrófilos/metabolismo , Ácidos Ftálicos
12.
Mol Immunol ; 141: 297-304, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915269

RESUMEN

B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.


Asunto(s)
Antiinflamatorios/inmunología , Trastorno del Espectro Autista/inmunología , Trastorno Autístico/inmunología , Linfocitos B/inmunología , Citocinas/inmunología , Inflamación/inmunología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Inmunidad/inmunología , Masculino , Monocitos/inmunología , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología
13.
Artículo en Inglés | MEDLINE | ID: mdl-34948647

RESUMEN

Although autism spectrum disorder (ASD) is a common developmental disorder, primary healthcare providers show a deficit in providing early diagnosis. To understand parents' experience and perspective in the diagnosis and intervention process of their children, a survey was deployed through social media to parents' with at least one child diagnosed with ASD. The survey included parents experience, satisfaction and perception in the diagnosis process and services provided for their children, stigma and type of support received. A total of 223 participants were enrolled. Although 62% of ASD patients were diagnosed by three years old, most diagnoses (66%) were non-physician initiated. Additionally, 40.8% of the parents reported that the services required for their child are available in their area of residence, but only 7.9% were satisfied with these services. Parents who received psychological support (9.9%) started early intervention, and their children have a better prognosis (p ≤ 0.005). Stigmatized parents were more likely to delay intervention (p ≤ 0.005). Parents' perception is to have qualified healthcare and educational professionals experienced in ASD. Our findings suggest that a specialized family-centred medical home for ASD patients would significantly benefit ASD patients, increase parents' satisfaction, reduce parents' stress, and ease their children's transition to adolescents.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/terapia , Cuidadores , Niño , Preescolar , Humanos , Atención Dirigida al Paciente , Atención Primaria de Salud
14.
Sci Rep ; 11(1): 17743, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493761

RESUMEN

Androgens have been implicated in autism pathophysiology as recently, prenatal exposure to elevated androgens has been proposed as risk factor. However, published data on postnatal sex hormone levels in autistic children are controversial and the source of prenatal androgen exposure in autism remains unknown. Therefore, this study investigated postnatal sex hormone levels and dehydroepiandrosterone (DHEA) to shed light on a potential role for the adrenal gland in autism pathophysiology. A case-control study investigating estradiol (E2), DHEA, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels was conducted with 31 Saudi males with autism and 28 healthy, age-matched boys plasma. Moreover, correlation analysis with measured hormones and previously measured total testosterone (TT) and free testosterone (FT) in the same group of autism was conducted. DHEA was significantly higher (p < 0.05) in the autism group compared to controls. DHEA positively correlated with previously measured TT (r = + 0.79, p < 0.001) and FT (r = + 0.72, p < 0.001) levels in the same autism group. FSH levels were also significantly higher in the autism group than in the control group (p < 0.01). To the best of our knowledge, this is the first study to report a strong positive correlation between TT, FT and DHEA, suggesting an adrenal source for elevated androgen levels.


Asunto(s)
Glándulas Suprarrenales/fisiopatología , Trastorno Autístico/fisiopatología , Antropometría , Trastorno Autístico/sangre , Estudios de Casos y Controles , Sulfato de Deshidroepiandrosterona/sangre , Estradiol/sangre , Hormona Folículo Estimulante/sangre , Humanos , Hormona Luteinizante/sangre , Masculino , Globulina de Unión a Hormona Sexual/análisis , Testosterona/sangre
15.
Children (Basel) ; 8(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562037

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral abnormalities such as impairments in social function and deficits in communication. The etiology of autism is unknown in most cases, but many studies have pointed towards the immune system as a causative agent in autism. Specific studies implicated lymphocytes, natural killer (NK) cells, monocytes, cytokines, and specific transcription factors in the development of ASD. The protein Ki-67 is n expressed in the proliferating cells and is used as a tool in several disorders. Ki-67 plays a crucial role in many neurological diseases. However, Ki-67 role in ASD is not fully understood. In this study, we investigated the possible role of Ki-67 expression in autistic children. We compared Ki-67 production in CD3+, CD4+, CD8+, CXCR4+, CXCR7+, CD45R+, HLA-DR+, GATA3+, Helios+, and FOXP3+ peripheral blood mononuclear cells (PBMCs) in autistic children to typically developing (TD) controls using immunofluorescence staining. We also determined Ki-67 mRNA levels in PBMCs using RT-PCR. The results revealed that autistic children had significantly increased numbers of CD3+Ki-67+, CD4+Ki-67+, CD8+Ki-67+, CXCR4+Ki-67+, CXCR7+Ki-67+, CD45R+Ki-67+, HLA-DR+Ki-67+, CXCR4+GATA3+, GATA3+Ki-67+ cells and decreased Helios+Ki-67+ and FOXP3+Ki-67+ cells compared with TD controls. In addition, the autistic children showed upregulation of Ki-67 mRNA levels compared with TD controls. Further studies need to be carried out to assess the exact role of Ki-67 and its therapeutic potential in ASD.

16.
Med Princ Pract ; 30(2): 160-167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33348337

RESUMEN

OBJECTIVES: The aim of this study was to correlate plasma levels of the synaptic proteins α-synuclein and γ-synuclein in autism spectrum disorder (ASD) children in order to elucidate their possible contribution to the pathogenesis of ASD and to study their association with the severity of the disorder. SUBJECTS AND METHODS: Plasma levels of α-synuclein and γ-synuclein were measured in 38 male children diagnosed with ASD and 40 healthy age-matched male children by ELISA. RESULTS: Our results showed that plasma levels of α-synuclein (18.02 ± 5.3 pg/mL) were significantly higher in ASD children than in control children (14.39 ± 2 pg/mL), and plasma levels of γ-synuclein were decreased in the ASD group (23.74 ± 7.7 pg/mL) compared to the control group (32.40 ± 6.8 pg/mL) (p < 0.0001). Our data also indicate that plasma levels of both α-synuclein and γ-synuclein are significantly associated with the severity of ASD. CONCLUSIONS: Our study showed that alteration in α-synuclein and γ-synuclein might be associated with ASD pathogenesis and could be an indicator of the severity of the disorder.


Asunto(s)
Trastorno del Espectro Autista/sangre , Índice de Severidad de la Enfermedad , gamma-Sinucleína/sangre , Niño , Preescolar , Humanos , Masculino , alfa-Sinucleína/sangre
17.
J Neuroimmunol ; 349: 577430, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130460

RESUMEN

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by communication deficits, impaired social interactions, and restricted stereotypical behaviors. Several immune cells are associated with immune dysfunction in ASD; however, IL-31 has not been explored in ASD. This study aims to investigate the role of inflammatory cytokines and transcription factors of the CXCR1 cells in children with ASD. In the current study, we investigated the cytokines and transcription factors produced by CXCR1+ cells (IL-31, IL-9, IL-21R, IL-21, NF-κB p65, RORγT, STAT1, and FoxP3) in peripheral blood mononuclear cells (PBMCs), from children with ASD and typically developing (TD) control children, using flow cytometric analysis. In addition, we measured mRNA and protein expression levels of IL-31 using quantitative real-time PCR and western blot analyses in PBMCs. In our study, children with ASD had increased CXCR1+IL-31+, CXCR1+IL-9+, CXCR1+IL-21R+, CXCR1+IL-21+, CXCR1+NF-κB+ p65, CXCR1+RORγT+, and CXCR1+STAT1+, and decreased CXCR1+FoxP3+ cells as compared with cells from the TD control samples. Similarly, children with ASD showed increased IL-31 mRNA and protein expression levels as compared to those of TD control samples. Our results suggest that upregulated production of inflammatory cytokines and transcription factors in CXCR1+ cells cause immunological imbalance in children with ASD. Therefore, attenuation of inflammatory cytokines/mediators and transcription factors could have a therapeutic potential in the treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Citocinas/biosíntesis , Interleucinas/biosíntesis , Leucocitos Mononucleares/metabolismo , Receptores de Interleucina-8A/biosíntesis , Regulación hacia Arriba/fisiología , Trastorno del Espectro Autista/inmunología , Niño , Preescolar , Estudios Transversales , Citocinas/inmunología , Humanos , Interleucinas/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Receptores de Interleucina-8A/inmunología
18.
Toxicology ; 446: 152597, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991955

RESUMEN

Genetic as well as environmental factors are believed to play a significant role in the pathogenesis and progression of autism spectrum disorder (ASD). Phthalates are ubiquitous environmental contaminants as they are used plasticizers in several household/industrial products such as vinyl flooring, plastic toys, and cosmetic products. One of the plasticizers that is quite prevalent in these products is di-2-ethylhexyl phthalate (DEHP) which can cause human exposure via dermal/inhalation/ingestion routes. DEHP and its metabolites are associated with behavioral dysregulations and reported to be increased in systemic circulation of ASD children. DEHP is reported to cause upregulation of several inflammatory cytokines in different cells/tissues, however its role in inflammatory signaling of ASD monocytes has not been investigated earlier. Therefore, this study evaluated the effects of DEHP (at 5 µM final concentration for 24 h) on inflammatory profile (NFkB, STAT3, IL-6, TNF-α, IL-1ß) in monocytes of ASD subjects and typically developing control (TDC) children. Our data show that DEHP upregulates NFkB/STAT3 expression which is associated with increased inflammatory profile in monocytes of ASD and TDC subjects, however its effect is much greater in magnitude in the former group. This was confirmed by utilization of NFkB inhibitor, PDTC and STAT3 inhibitor, Stattic which caused reduction in inflammatory cytokines from DEHP-treated monocytes in ASD group. In short, DEHP causes further elevation in inflammatory signaling in ASD monocytes which could be due to existing inflammation in this group. These data suggest that use of plasticizers such as DEHP should be minimized in order to avoid their potential effects on immune dysfunction associated with ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Dietilhexil Ftalato/toxicidad , Mediadores de Inflamación/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Plastificantes/toxicidad , Trastorno del Espectro Autista/patología , Células Cultivadas , Niño , Estudios Transversales , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Masculino , Monocitos/patología
19.
Int Immunopharmacol ; 84: 106555, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32388012

RESUMEN

Autism spectrum disorder (ASD) is a childhood disorder with neurodevelopmental dysfunction which manifests as impairment in social behavior and communication skills. B cells play an important role in immune dysfunction where toll-like receptor 4 (TLR4) may contribute through oxidative inflammatory process. TLR4 related signaling and oxidative stress have been reported in the periphery of ASD subjects, however it has not been evaluated in peripheral B cells of ASD subjects and compared with typically developing control (TDC) children. This study evaluated TLR4 expression and related signaling [Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), NF-kB, NADPH oxidase (NOX2), nitrotyrosine, superoxide dismutase (SOD)] in ASD and TDC subjects. Current investigation in B cells shows that ASD subjects have increased TLR4 expression and oxidative stress as exhibited by upregulated NOX2 and nitrotyrosine expression as compared to TDC subjects. B cell relevant pathways, BTK/SYK/NF-kB were also upregulated in B cells of ASD group. Treatment with TLR4 agonist, LPS led to upregulation of NOX2 and nitrotyrosine in B cells of ASD whereas it had no significant effect on TDC subjects. Treatment with NF-kB inhibitor caused inhibition of LPS-induced upregulation of NOX2 and nitrotyrosine in B cells of ASD. Therefore, current investigation proposes the notion that TLR4 expression is elevated in B cells which is associated with increased NF-kB signaling and oxidant stress in ASD subjects. In short, peripheral B cells could contribute to systemic oxidative inflammation and contribute to the immune dysfunction in ASD.


Asunto(s)
Trastorno Autístico/inmunología , Linfocitos B/inmunología , NADPH Oxidasa 2/inmunología , Estrés Oxidativo/inmunología , Receptor Toll-Like 4/inmunología , Agammaglobulinemia Tirosina Quinasa/inmunología , Niño , Femenino , Humanos , Masculino , FN-kappa B/inmunología , Quinasa Syk/inmunología , Receptor Toll-Like 4/genética
20.
Int Immunopharmacol ; 83: 106466, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32259699

RESUMEN

Autismspectrum disorder (ASD) is a complex and multifactorial heterogeneous disorder. Previous investigations have revealed the association between the immune system and ASD, which is characterized by impaired communication skills. Inflammatory response through CD45 cells plays a key role in the pathogenesis of several autoimmune disorders; however, the molecular mechanism of CD45 cells in ASD is not clearly defined.In this study, we investigated the role of CD45 signaling in children with ASD. In this study, we aimed to investigate the possible involvement of CD45 cells expressing granulocyte-macrophage colony-stimulating factor and inflammatory transcription factors in ASD. Flow cytometric analysis, using peripheral blood mononuclear cells (PBMC), revealed the numbers of GM-CSF-, IFN-γ-, IL-6-, IL-9-, IL-22-, T-bet-, pStat3-, Helios-, and Stat6-producing CD45+ cells in children with ASD and children in the control group. We further evaluated the mRNA and protein expression levels of GM-CSF in PBMC by RT-PCR and western blotting analysis. Our results revealed that the children with ASD exhibited significantly higher numbers of CD45+GM-CSF+, CD45+IFN-γ+, CD45+IL-6+, CD45+IL-9+, CD45+IL-22+, CD45+T-bet+, and CD45+pStat3+ cells compared with the control group. We also found that the children with ASD showed a lower number of CD45+Helios+ and CD45+Stat6+ cells compared with the control group. Furthermore, the children with ASD showed higher GM-CSF mRNA and protein expression levels compared with the control group. These results indicated that CD45 could play an essential role in the immune abnormalities of ASD. Further investigation of the role of CD45 in neurodevelopment in ASD is warranted.


Asunto(s)
Trastorno del Espectro Autista/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/inmunología , Antígenos Comunes de Leucocito/metabolismo , Leucocitos Mononucleares/inmunología , Niño , Estudios Transversales , Citocinas/metabolismo , Femenino , Citometría de Flujo , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...