Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 65(3): 035007, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31881547

RESUMEN

Currently methods for predicting absorbed dose after administering a radiopharmaceutical are rather crude in daily clinical practice. Most importantly, individual tissue density distributions as well as local variations of the concentration of the radiopharmaceutical are commonly neglected. The current study proposes machine learning techniques like Green's function-based empirical mode decomposition and deep learning methods on U-net architectures in conjunction with soft tissue kernel Monte Carlo (MC) simulations to overcome current limitations in precision and reliability of dose estimations for clinical dosimetric applications. We present a hybrid method (DNN-EMD) based on deep neural networks (DNN) in combination with empirical mode decomposition (EMD) techniques. The algorithm receives x-ray computed tomography (CT) tissue density maps and dose maps, estimated according to the MIRD protocol, i.e. employing whole organ S-values and related time-integrated activities (TIAs), and from measured SPECT distributions of 177Lu radionuclei, and learns to predict individual absorbed dose distributions. In a second step, density maps are replaced by their intrinsic modes as deduced from an EMD analysis. The system is trained using individual full MC simulation results as reference. Data from a patient cohort of 26 subjects are reported in this study. The proposed methods were validated employing a leave-one-out cross-validation technique. Deviations of estimated dose from corresponding MC results corroborate a superior performance of the newly proposed hybrid DNN-EMD method compared to its related MIRD DVK dose calculation. Not only are the mean deviations much smaller with the new method, but also the related variances are much reduced. If intrinsic modes of the tissue density maps are input to the algorithm, variances become even further reduced though the mean deviations are less affected. The newly proposed hybrid DNN-EMD method for individualized radiation dose prediction outperforms the MIRD DVK dose calculation method. It is fast enough to be of use in daily clinical practice.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Lutecio/farmacocinética , Lutecio/uso terapéutico , Método de Montecarlo , Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación , Radioisótopos/farmacocinética , Radioisótopos/uso terapéutico , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Neoplasias/metabolismo , Redes Neurales de la Computación , Dosis de Radiación , Radiofármacos/uso terapéutico , Reproducibilidad de los Resultados , Distribución Tisular , Tomografía Computarizada por Rayos X/métodos
2.
Curr Alzheimer Res ; 13(6): 695-707, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27001676

RESUMEN

Positron emission tomography (PET) provides a functional imaging modality to detect signs of dementias in human brains. Two-dimensional empirical mode decomposition (2D-EMD) provides means to analyze such images. It decomposes the latter into characteristic modes which represent textures on different spatial scales. These textures provide informative features for subsequent classification purposes. The study proposes a new EMD variant which relies on a Green's function based estimation method including a tension parameter to fast and reliably estimate the envelope hypersurfaces interpolating extremal points of the two-dimensional intensity distrubution of the images. The new method represents a fast and stable bi-dimensional EMD which speeds up computations roughly 100-fold. In combination with proper classifiers these exploratory feature extraction techniques can form a computer aided diagnosis (CAD) system to assist clinicians in identifying various diseases from functional images alone. PET images of subjects suffering from Alzheimer's disease are taken to illustrate this ability.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Fluorodesoxiglucosa F18 , Humanos , Dinámicas no Lineales , Radiofármacos , Máquina de Vectores de Soporte
3.
J Neurosci Methods ; 253: 193-205, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26162614

RESUMEN

BACKGROUND: Empirical mode decomposition (EMD) is an empirical data decomposition technique. Recently there is growing interest in applying EMD in the biomedical field. NEW METHOD: EMDLAB is an extensible plug-in for the EEGLAB toolbox, which is an open software environment for electrophysiological data analysis. RESULTS: EMDLAB can be used to perform, easily and effectively, four common types of EMD: plain EMD, ensemble EMD (EEMD), weighted sliding EMD (wSEMD) and multivariate EMD (MEMD) on EEG data. In addition, EMDLAB is a user-friendly toolbox and closely implemented in the EEGLAB toolbox. COMPARISON WITH EXISTING METHODS: EMDLAB gains an advantage over other open-source toolboxes by exploiting the advantageous visualization capabilities of EEGLAB for extracted intrinsic mode functions (IMFs) and Event-Related Modes (ERMs) of the signal. CONCLUSIONS: EMDLAB is a reliable, efficient, and automated solution for extracting and visualizing the extracted IMFs and ERMs by EMD algorithms in EEG study.


Asunto(s)
Algoritmos , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Electroencefalografía , Electromiografía , Humanos , Dinámicas no Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA