Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38894320

RESUMEN

In this study, a two-port network-based microwave sensor for liquid characterization is presented. The suggested sensor is built as a miniature microwave resonator using the third iteration of Hilbert's fractal architecture. The suggested structure is used with the T-resonator to raise the sensor quality factor. The suggested sensor is printed on a FR4 substrate and has a footprint of 40×60×1.6mm3. Analytically, a theoretical investigation is made to clarify how the suggested sensor might function. The suggested sensor is created and put to the test in an experiment. Later, two pans to contain the urine Sample Under Test (SUT) are printed on the sensor. Before loading the SUT, it is discovered that the suggested structure's frequency resonance is 0.46 GHz. An 18 MHz frequency shift is added to the initial resonance after the pans are printed. They monitor the S-parameters in terms of S12 regarding the change in water content in the urine samples, allowing for the sensing component to be completed. As a result, 10 different samples with varying urine percentages are added to the suggested sensor to evaluate its ability to detect the presence of urine. Finally, it is discovered that the suggested process' measurements and corresponding simulated outcomes agreed quite well.


Asunto(s)
Microondas , Agua , Agua/química , Humanos , Orina/química
2.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37300033

RESUMEN

The permittivity of a material is an important parameter to characterize the degree of polarization of a material and identify components and impurities. This paper presents a non-invasive measurement technique to characterize materials in terms of their permittivity based on a modified metamaterial unit-cell sensor. The sensor consists of a complementary split-ring resonator (C-SRR), but its fringe electric field is contained with a conductive shield to intensify the normal component of the electric field. It is shown that by tightly electromagnetically coupling opposite sides of the unit-cell sensor to the input/output microstrip feedlines, two distinct resonant modes are excited. Perturbation of the fundamental mode is exploited here for determining the permittivity of materials. The sensitivity of the modified metamaterial unit-cell sensor is enhanced four-fold by using it to construct a tri-composite split-ring resonator (TC-SRR). The measured results confirm that the proposed technique provides an accurate and inexpensive solution to determine the permittivity of materials.


Asunto(s)
Electricidad , Refracción Ocular , Conductividad Eléctrica
3.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34883874

RESUMEN

A microstrip highly sensitive differential sensor for complex permittivity characterization of urine samples was designed, fabricated and tested. The sensing area contains two pairs of open-stub resonators, and the working frequency of the unloaded sensor is 1.25 GHz. The sensor is easily implemented on an affordable substrate FR-4 Epoxy with a thickness of 1.6 mm. A Teflon beaker is mounted on the sensor without affecting the measurements. Numerically, liquid mixtures of water and urine at different percentages were introduced to the proposed sensor to evaluate the frequency variation. The percentage of water content in the mixture varied from 0% (100% urine) to 100% (0% urine) with a step of 3.226%, thus giving 32 data groups of the simulated results. Experimentally, the mixtures of: 0% urine (100% water), 20% urine (80% water), 33% urine (66% water), 50% urine (50% water), 66% urine (33% water), and 100% urine (0% water) were considered for validation. The complex permittivity of the considered samples was evaluated using a nonlinear least square curve fitting in MATLAB in order to realize a sensing sensitivity of about 3%.


Asunto(s)
Microondas , Agua
4.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266122

RESUMEN

In this paper, a sensor using modified Split Ring Resonators (SRRs) is designed, simulated, fabricated, and used for advanced investigation and precise measurements of the real part and imaginary part solid dielectrics' permittivity. Adding vertical strips tightly coupled to the outer ring of the SRR leads to the appearance of two resonant frequencies at 1.24 GHz and 2.08 GHz. This modified geometry also assures an improved sensitivity. Using the full wave electromagnetic solver, both the unloaded and loaded sensors are investigated. The numerical simulations are used to develop a mathematical model based on a curve fitting tool for both resonant frequencies, allowing to obtain analytical relations for real and imaginary parts of permittivity as a function of the sample's thickness and quality factor. The sensor is designed and fabricated on 1.6 mm thick FR-4 substrate. The measurements of different samples, such as transparent glass, acrylic glass, plexiglass, and Teflon, confirm that the modified SRR sensor is easy to implement and gives accurate results for all cases, with measurement errors smaller than 4.5%. In addition, the measurements highlight the importance of the second resonant frequency in the cases in which numerical limitations do not allow the usage of the first resonant frequency (1 mm thick sample).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...