Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752280

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Parkinson , Receptor trkB , Transducción de Señal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Receptor trkB/metabolismo , Animales , Glicoproteínas de Membrana/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología
2.
Brain Res Bull ; 213: 110973, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723694

RESUMEN

Epilepsy is a common neurological disease characterized by the recurrent, paroxysmal, and unprovoked seizures. It has been shown that hyperuricemia enhances and associated with the development and progression of epilepsy through induction of inflammation and oxidative stress. In addition, uric acid is released within the brain and contributes in the development of neuronal hyperexcitability and epileptic seizure. Brain uric acid acts as damage associated molecular pattern (DAMP) activates the immune response and induce the development of neuroinflammation. Therefore, inhibition of xanthine oxidase by allopurinol may reduce hyperuricemia-induced epileptic seizure and associated oxidative stress and inflammation. However, the underlying mechanism of allopurinol in the epilepsy was not fully elucidated. Therefore, this review aims to revise from published articles the link between hyperuricemia and epilepsy, and how allopurinol inhibits the development of epileptic seizure.

3.
Mol Neurobiol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703341

RESUMEN

Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.

4.
Diabetes Obes Metab ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802993

RESUMEN

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.

5.
J Cent Nerv Syst Dis ; 16: 11795735241247810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655152

RESUMEN

Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated. Therefore, this review aimed to revise the mechanistic pathway of p75NTR in epilepsy.


Roles of p75 neurotrophin receptor (p75NTR) in epilepsy: Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated.

6.
Eur J Med Res ; 29(1): 205, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539252

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease as a result of the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The fundamental features of PD are motor and non-motor symptoms. PD symptoms develop due to the disruption of dopaminergic neurotransmitters and other neurotransmitters such as γ-aminobutyric acid (GABA). The potential role of GABA in PD neuropathology concerning the motor and non-motor symptoms of PD was not precisely discussed. Therefore, this review intended to illustrate the possible role of GABA in PD neuropathology regarding motor and non-motor symptoms. The GABA pathway is essential in regulating the inhibitory tone to prevent excessive stimulation of the cerebral cortex. Degeneration of dopaminergic neurons in PD is linked with reducing GABAergic neurotransmission. Decreasing GABA activity promotes mitochondrial dysfunction and oxidative stress, which are highly related to PD neuropathology. Hence, restoring GABA activity by GABA agonists may attenuate the progression of PD motor symptoms. Therefore, dysregulation of GABAergic neurons in the SNpc contributes to developing PD motor symptoms. Besides, PD non-motor symptoms are also related to the dysfunction of the GABAergic pathway, and amelioration of this pathway may reduce PD non-motor symptoms. In conclusion, the deregulation of the GABAergic pathway in PD might be intricate in developing motor and non-motor symptoms. Improving this pathway might be a novel, beneficial approach to control PD symptoms.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Ácido gamma-Aminobutírico/fisiología , Neurotransmisores
7.
CNS Neurosci Ther ; 30(3): e14521, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38491789

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM: Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION: There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.


Asunto(s)
Enfermedad de Parkinson , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Humanos , Ácido gamma-Aminobutírico , Estudios Prospectivos , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/complicaciones , Estudios Observacionales como Asunto
8.
Ageing Res Rev ; 95: 102233, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360180

RESUMEN

The ketogenic diet (KD) is a low-carbohydrate, adequate protein and high-fat diet. KD is primarily used to treat refractory epilepsy. KD was shown to be effective in treating different neurodegenerative diseases. Alzheimer disease (AD) is the first common neurodegenerative disease in the world characterized by memory and cognitive impairment. However, the underlying mechanism of KD in controlling of AD and other neurodegenerative diseases are not discussed widely. Therefore, this review aims to revise the fundamental mechanism of KD in different neurodegenerative diseases focusing on the AD. KD induces a fasting-like which modulates the central and peripheral metabolism by regulating mitochondrial dysfunction, oxidative stress, inflammation, gut-flora, and autophagy in different neurodegenerative diseases. Different studies highlighted that KD improves AD neuropathology by regulating synaptic neurotransmission and inhibiting of neuroinflammation and oxidative stress. In conclusion, KD improves cognitive function and attenuates the progression of AD neuropathology by reducing oxidative stress, mitochondrial dysfunction, and enhancing neuronal autophagy and brain BDNF.


Asunto(s)
Enfermedad de Alzheimer , Dieta Cetogénica , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Enfermedades Mitocondriales/metabolismo
9.
Mol Neurobiol ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367137

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3ß) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3ß in PD neuropathology, and how GSK-3ß inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3ß is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3ß in PD neuropathology is not fully clarified. Over-expression of GSK-3ß induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3ß in PD leading to progressive neuronal injury. Higher expression of GSK-3ß in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3ß inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.

10.
Autophagy ; : 1-10, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38346408

RESUMEN

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.

11.
Eur J Med Res ; 29(1): 113, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336772

RESUMEN

Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.


Asunto(s)
Fenofibrato , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Sistema Nervioso Central , Neuronas/patología , Inflamación/patología
12.
Ageing Res Rev ; 95: 102209, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286334

RESUMEN

Vascular Parkinsonism (VP) is clinical term represents a progressive ischemic changes and subcortical lacunar infarct leading to Parkinsonism mainly in the lower limbs so called lower body Parkinsonism. The VP neuropathology is differed from that of PD neuropathology which rarely associated with basal ganglion lesions. Dopamine transporters are normal in VP but are highly reduced in PD, and dopaminergic agonists had no effective role on VP. The neuropathological mechanisms of VP are related to vascular injury which induces the interruption of the neural connection between basal ganglion and cerebral cortex. Hyperlipidemia and other cardiometabolic risk factors augment VP risk and the related neuropathology. Targeting of these cardiometabolic disorders by lipid-lowering statins may be effective in the management of VP. Therefore, this mini-review aims to clarify the possible role of statins in the management of VP. Statins have neuroprotective effects against different neurodegenerative diseases by anti-inflammatory, antioxidant and antithrombotic effects with enhancement of endothelial function. In conclusion, statins can prevent and treat VP by inhibiting inflammatory and oxidative stress disorders, mitigating of white matter hyperintensities and improving of neuronal signaling pathways. Additional preclinical, clinical trials and prospective studies are warranted in this regard.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedad de Parkinson Secundaria , Trastornos Parkinsonianos , Enfermedades Vasculares , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Trastornos Parkinsonianos/etiología , Trastornos Parkinsonianos/patología
13.
Ageing Res Rev ; 94: 102200, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237699

RESUMEN

Parkinson disease (PD) is a common brain neurodegenerative disease due to progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). Of note, the cardio-metabolic disorders such as hypertension are adversely affect PD neuropathology through exaggeration of renin-angiotensin system (RAS). The RAS affects the stability of dopaminergic neurons in the SNpc, and exaggeration of angiotensin II (AngII) is implicated in the development and progression of PD. RAS has two axes classical including angiotensin converting enzyme (ACE)/AngII/AT1R, and the non-classical axis which include ACE2/Ang1-7/Mas receptor, AngIII, AngIV, AT2R, and AT4R. It has been shown that brain RAS is differs from that of systemic RAS that produce specific neuronal effects. As well, there is an association between brain RAS and PD. Therefore, this review aims to revise from published articles the role of brain RAS in the pathogenesis of PD focusing on the non-classical pathway, and how targeting of this axis can modulate PD neuropathology.


Asunto(s)
Hipertensión , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Sistema Renina-Angiotensina/fisiología , Angiotensina II/metabolismo , Peptidil-Dipeptidasa A/metabolismo
16.
J Biochem Mol Toxicol ; 38(1): e23605, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38069809

RESUMEN

COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Factor 2 Relacionado con NF-E2 , Inflamación , Pulmón
18.
Mol Cell Biochem ; 479(4): 975-991, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37266747

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease developed due to the degeneration of dopaminergic neurons in the substantia nigra. There is no single effective treatment in the management of PD. Therefore, repurposing effective and approved drugs like metformin could be an effective strategy for managing PD. However, the mechanistic role of metformin in PD neuropathology was not fully elucidated. Metformin is an insulin-sensitizing agent used as a first-line therapy in the management of type 2 diabetes mellitus (T2DM) and has the ability to reduce insulin resistance (IR). Metformin may have a beneficial effect on PD neuropathology. The neuroprotective effect of metformin is mainly mediated by activating adenosine monophosphate protein kinase (AMPK), which reduces mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation. As well, metformin mitigates brain IR a hallmark of PD and other neurodegenerative diseases. However, metformin may harm PD neuropathology by inducing hyperhomocysteinemia and deficiency of folate and B12. Therefore, this review aimed to find the potential role of metformin regarding its protective and detrimental effects on the pathogenesis of PD. The mechanistic role of metformin in PD neuropathology was not fully elucidated. Most studies regarding metformin and its effectiveness in PD neuropathology were observed in preclinical studies, which are not fully translated into clinical settings. In addition, metformin effect on PD neuropathology was previously clarified in T2DM, potentially linked to an increasing PD risk. These limitations hinder the conclusion concerning the therapeutic efficacy of metformin and its beneficial and detrimental role in PD. Therefore, as metformin does not cause hypoglycemia and is a safe drug, it should be evaluated in non-diabetic patients concerning PD risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Enfermedades Neurodegenerativas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuronas Dopaminérgicas
19.
Autophagy ; 20(2): 259-274, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37712858

RESUMEN

Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system (CNS) due to an increase of abnormal peripherally auto-reactive T lymphocytes which elicit autoimmunity. The main pathophysiology of MS is myelin sheath damage by immune cells and a defect in the generation of myelin by oligodendrocytes. Macroautophagy/autophagy is a critical degradation process that eliminates dysfunctional or superfluous cellular components. Autophagy has the property of a double-edged sword in MS in that it may have both beneficial and detrimental effects on MS neuropathology. Therefore, this review illustrates the protective and harmful effects of autophagy with regard to this disease. Autophagy prevents the progression of MS by reducing oxidative stress and inflammatory disorders. In contrast, over-activated autophagy is associated with the progression of MS neuropathology and in this case the use of autophagy inhibitors may alleviate the pathogenesis of MS. Furthermore, autophagy provokes the activation of different immune and supporting cells that play an intricate role in the pathogenesis of MS. Autophagy functions in the modulation of MS neuropathology by regulating cell proliferation related to demyelination and remyelination. Autophagy enhances remyelination by increasing the activity of oligodendrocytes, and astrocytes. However, autophagy induces demyelination by activating microglia and T cells. In conclusion, specific autophagic activators of oligodendrocytes, and astrocytes, and specific autophagic inhibitors of dendritic cells (DCs), microglia and T cells induce protective effects against the pathogenesis of MS.Abbreviations: ALS: amyotrophic lateral sclerosis; APCs: antigen-presenting cells; BBB: blood-brain barrier; CSF: cerebrospinal fluid; CNS: central nervous system; DCs: dendritic cells; EAE: experimental autoimmune encephalomyelitis; ER: endoplasmic reticulum; LAP: LC3-associated phagocytosis; MS: multiple sclerosis; NCA: non-canonical autophagy; OCBs: oligoclonal bands; PBMCs: peripheral blood mononuclear cells; PD: Parkinson disease; ROS: reactive oxygen species; UPR: unfolded protein response.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Esclerosis Múltiple/metabolismo , Leucocitos Mononucleares/metabolismo , Autofagia , Sistema Nervioso Central , Ratones Endogámicos C57BL
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 33-40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555855

RESUMEN

Parkinson's disease (PD) is a neurodegenerative brain disease (NBD) developed due to dopaminergic neuron loss in the substantia nigra (SN). Vitamin D (VD), VD receptor (VDR), and VD metabolites are highly expressed in the human brain and play a critical role in maintaining different brain functions. VDRs are highly expressed in the SN that regulates the activity of dopaminergic neurons and synaptic plasticity. VD exerts protective and therapeutic effects against the development of PD by modulating dopaminergic neurons of SN. VD reduces oxidative stress and neuroinflammation in PD because of its anti-inflammatory and antioxidant activities. Different studies revealed the protective effect of VD in the management of PD. However, the potential therapeutic effect of VD in well-established PD remains controversial. Therefore, this review aims to elucidate VD's preventive and therapeutic roles in PD. In conclusion, VD deficiency is associated with increased PD risk, but VD supplementation in well-established PD plays little role.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Vitamina D/uso terapéutico , Sustancia Negra , Neuronas Dopaminérgicas , Encéfalo/metabolismo , Vitaminas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...