Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chemosphere ; 334: 139037, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244559

RESUMEN

Palm oil fuel ash (POFA) has limited use as a fertilizer, while contribute effectively to the environmental contamination and health risks. Petroleum sludge poses a serious effect on the ecological environment and human health. The present work aimed to present a novel encapsulation process with POFA binder for treating petroleum sludge. Among 16 polycyclic aromatic hydrocarbons, four compounds were selected for the optimization of encapsulation process due to their high risk as carcinogenic substrates. Percentage PS (10-50%) and curing days (7-28 days) factors were used in the optimization process. The leaching test of PAHs was assessed using a GC-MS. The best operating parameters to minimize PAHs leaching from solidified cubes with OPC and10% POFA were recorded with 10% PS and after 28 days, at which PAH leaching was 4.255 and 0.388 ppm with R2 is 0.90%. Sensitivity analysis of the actual and predicted results for both the control and the test (OPC and 10% POFA) revealed that the actual results of the 10% POFA experiments have a high consistency with the predicted data (R2 0.9881) while R2 in the cement experiments was 0.8009. These differences were explained based on the responses of PAH leaching toward percentage of PS and days of cure. In the OPC encapsulation process, the main role was belonged to PS% (94.22%), while with 10% POFA, PS% contributed by 32.36 and cure day contributed by 66.91%.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Humanos , Aguas del Alcantarillado/química , Aceite de Palma , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación Ambiental
2.
Environ Res ; 227: 115800, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003549

RESUMEN

The considerable increase in world energy consumption owing to rising global population, intercontinental transportation and industrialization has posed numerous environmental concerns. Particularly, in order to meet the required electricity supply, thermal power plants for electricity generation are widely used in many countries. However, an annually excessive quantity of waste fly ash up to 1 billion tones was globally discarded from the combustion of various carbon-containing feedstocks in thermoelectricity plants. About half of the industrially generated fly ash is dumped into landfills and hence causing soil and water contamination. Nonetheless, fly ash still contains many valuable components and possesses outstanding physicochemical properties. Utilizing waste fly ash for producing value-added products has gained significant interests. Therefore, in this work, we reviewed the current implementation of fly ash-derived materials, namely, zeolite and geopolymer as efficient adsorbents for the environmental treatment of flue gas and polluted water. Additionally, the usage of fly ash as a catalyst support for the photodegradation of organic pollutants and reforming processes for the corresponding wastewater remediation and H2 energy generation is thoroughly covered. In comparison with conventional carbon-based adsorbents, fly ash-derived geopolymer and zeolite materials reportedly exhibited greater heavy metal ions removal and reached the maximum adsorption capacity of about 150 mg g-1. As a support for biogas reforming process, fly ash could enhance the activity of Ni catalyst with 96% and 97% of CO2 and CH4 conversions, respectively.


Asunto(s)
Restauración y Remediación Ambiental , Zeolitas , Ceniza del Carbón , Zeolitas/química , Agua , Carbono/química
3.
Environ Res ; 222: 115316, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669587

RESUMEN

Xenobiotic Organic Compounds (XOCs) have been widely considered to be pollutant compounds due to their harmful impacts on aquatic life. However, there have been few rigorous studies of cutting-edge technology used to eradicate XOCs and their presence in bathroom greywater. The present review provides a comprehensive examination of current methodologies used for removing XOCs by photocatalysis of green nanoparticles. It was appeared that zinc oxide nanoparticles (ZnO NPs) have high efficiency (99%) in photocatalysis process. Green synthesis provides proven processes that do not require dangerous chemicals or expensive equipment, making photocatalysis a potential solution for the status quo. XOCs residue was decomposed, and pollutants were eliminated with varied degrees of efficiency using green synthesis ZnO nanoparticles. It is hypothesized that the utilization of photocatalysis can create a greywater treatment system capable of degrading the toxic XOCs in greywater while increasing the pace of production. Hence, this review will be beneficial in improving greywater quality and photocatalysis using green nanoparticles can be an immediate platform in solving the issue regarding the existence of XOCs in greywater in Malaysia. Researchers in the future may benefit from focusing on optimizing photocatalytic degradation using green-synthesis ZnO. It might also help with the creativity and productivity of the next generation of authoritative concerns, notably water conservation.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Óxido de Zinc , Xenobióticos , Compuestos Orgánicos
4.
Microbiol Res ; 268: 127298, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610273

RESUMEN

Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.


Asunto(s)
Infecciones por Pseudomonas , Infecciones Estafilocócicas , Humanos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Interacciones Microbianas , Biopelículas , Técnicas de Cocultivo
5.
Environ Sci Pollut Res Int ; 30(28): 71780-71793, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34585345

RESUMEN

Slaughterhouse and wet market wastes are pollutants that have been always neglected by society. According to the Food and Agriculture Organization of the United Nations, more than three billion and nineteen million livestock were consumed worldwide in 2018, which reflects the vast amount and the broad spectrum of the biowastes generated. Slaughterhouse biowastes are a significant volume of biohazards that poses a high risk of contamination to the environment, an outbreak of diseases, and insecure food safety. This work comprehensively reviewed existing biowaste disposal practices and revealed the limitations of technological advancements to eradicate the threat of possible harmful infectious agents from these wastes. Policies, including strict supervision and uniform minimum hygienic regulations at all raw food processing factories, should therefore be tightened to ensure the protection of the food supply. The vast quantity of biowastes also offers a zero-waste potential for a circular economy, but the incorporation of biowaste recycling, including composting, anaerobic digestion, and thermal treatment, nevertheless remains challenging.


Asunto(s)
Mataderos , Eliminación de Residuos , Agricultura , Compostaje , Alimentos , Administración de Residuos
6.
Environ Sci Pollut Res Int ; 30(10): 25103-25118, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34617227

RESUMEN

The current work aimed to investigate the degradation of the triclocarban (TCC) in aqueous solution using a modified zeolite/TiO2 composite (MZTC) synthesized by applying the electrochemical anodization (ECA). The synthesis process was conducted at different voltages (10, 40, and 60) V in 1 h and using electrophoresis deposition (EPD) in doping zeolite. The MZTC was covered with the array ordered, smooth and optimum elongated nanotubes with 5.1 µm of the length, 120.3 nm of the inner diameter 14.5 nm of the wall thickness with pure titanium and crystalline titania as determined by FESEM/EDS, and XRD. The kinetic study by following Langmuir-Hinshelwood(L-H) model and pseudo first order, the significant constant rate was obtained at pH 11 which was 0.079 ppm/min, 0.75 cm2 of MZTC catalyst loading size achieved 0.076 ppm/min and 5 ppm of TCC initial concentration reached 0.162 ppm/min. The high-performance liquid chromatography (HPLC) analysis for mechanism study of TCC photocatalytic degradation revealed eleven intermediate products after the whole process of photocatalysis. In regard of toxicology assessment by the bacteria which is Photobacterium phosphoreum, the obtained concentration of TCC at minute 60 was less satisfied with remained 0.36 ppm of TCC was detected indicates that the concentration was above allowable level. Where the allowable level of TCC in stream is 0.1 ppm.


Asunto(s)
Carbanilidas , Zeolitas , Cinética , Titanio/química , Catálisis
7.
Chemosphere ; 308(Pt 1): 136165, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36037954

RESUMEN

Heavy-metal-bearing wastewater is among the most formidable challenges the mining industry currently faces in maintaining its social license to operate. Amongst the technologies available for metal ion adsorption, bioinspired engineering nanomaterials have emerged as one which exhibits great promise. However, current processes used for the preparation of adsorbents (including nanoscale activated carbon and biochar) represent a source of adverse impacts on the environment. In contrast, the application of biogenic-nanoparticles, i.e., those derived from processes catalysed by microbiota, has received significant attention in the last few years. Coupled with this, the use of naturally occurring reagents is of major importance for the sustainability of this emerging industry. This paper analyses the life cycle assessment (LCA) of the synthesis of adsorbents derived from agricultural wastes. Moreover, rather than simply recovering the ecotoxic metals from wastewater, the potential to valorise dissolved metals into high-value metallic nanoparticle products is discussed. LCA analysis revealed that the adsorbent had some adverse impact on the environment. The agricultural wastes contributed 27.86% to global warming, 54.64% to ozone formation, 33.06% to fine particles, and 98.24% to marine eutrophication. Mining wastewater is an important, and largely currently unexploited, source of metal value. However, the often-low concentration of such metals dictates that their conversion into high-value products (such as engineered nanoparticles) is an important new research frontier. Within this the use of biosynthesis methods has emerged as having great potential due to a range of beneficial attributes, including low cost, high efficacy and/or environmental compatibility.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Ozono , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Iones , Aguas Residuales
8.
Environ Res ; 212(Pt E): 113537, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35671799

RESUMEN

Antibiotics in water systems and wastewater are among the greatest major public health problem and it is global environmental issues. Herein a novel approach for the photocatalytic degradation of metronidazole (MTZ) by using eco-green zinc oxide nanoparticles (EG-ZnO NPs) which biosynthesised using watermelon peels extracts has been investigated. Mathematical prediction models using an adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and response surface methodology (RSM) were used to determine the optimal conditions for the degradation process. The FESEM analysis revealed that EG-ZnO NPs was white with a spherical shape and size between 40 and 88 nm. The simulation process for the mathematical prediction model revealed that the best validation performance was 55.35 recorded at epoch 2, the coefficient (R2) was 0.9967 for training data, as detected using ANN analysis. The best operating parameters for MTZ degradation was predicted using RSM to be: 170 mg L-1 of EG-ZnO NPs, 20.61 mg 100 mL-1 of MTZ, 10 min exposure time, and a pH of 5, with 77.48 vs 78.14% corresponding to the predicted and empirically measured respectively. The photocatalytic degradation of MTZ was fitted with pseudo-first-order kinetic (R2 > 0.90). MTZ lost the antimicrobial activity against Bacillus cereus (B. cereus) and Escherichia coli (E. coli) after degradation with EG-ZnO NPs at the optimal conditions as determined in the optimization process. These findings reflect the important role ANFIS and ANN in predicting and optimising the efficacy of engineered nanomaterials, including EG-ZnO NPs, for antibiotic degradation.


Asunto(s)
Citrullus , Nanopartículas , Óxido de Zinc , Citrullus/metabolismo , Escherichia coli , Aprendizaje Automático , Metronidazol , Nanopartículas/química , Extractos Vegetales , Óxido de Zinc/química
9.
Environ Res ; 212(Pt C): 113380, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35537493

RESUMEN

The current work reviews the quantitative microbiological risk assessment of antibiotic-resistant bacteria (ARB) in greywater and discusses the international strategies currently used for reducing antimicrobial resistance. The work highlights the countries that have a plan for the treatment and reuse of greywater and the current guidelines used in these countries. The paper also investigates the role of greywater in the distribution of antimicrobial resistance because of antibiotics and ARB. A bibliometric analysis was conducted for the studies on greywater, pathogenic bacteria, and antibiotics. The studies obtained from Scopus database were screened and compared to obtain the data for global antimicrobial resistance in 2000 and 2021. The strategies used by developed countries that led to the reduction in the recorded antimicrobial resistance are also listed. The challenges and limitations associated with the current plans adopted by several countries to minimise the spreading of the antimicrobial resistance are highlighted, while proposed solutions are provided. Two main issues associated with the distribution of antimicrobial resistance are (1) the absence of a plan in developing counties and presence of antimicrobial agents and ARB in the environment and (2) the difficulties in the current treatment technologies used for the removal of these antimicrobial agents from the water and wastewater. Based on the review and discussion, it was concluded that more advanced technologies are required to ensure total elimination of the antimicrobial agents and ARB from the environment. In addition, a new international standard should be drafted for the ARB in the environment, as they differ from the one currently used for medical applications.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos , Bacterias , Aguas Residuales/microbiología
10.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458585

RESUMEN

The present study aims to characterize and predict models for antibacterial activity of a novel oligosaccharide from Streptomyces californics against Erwinia carotovora subsp. carotovora using an adaptive neuro-fuzzy inference system and an artificial neural network. The mathematical predication models were used to determine the optimal conditions to produce oligosaccharide and determine the relationship between the factors (pH, temperature, and time). The characteristics of the purified antibacterial agent were determined using ultraviolet spectroscopy (UV/Vis), infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H- and 13C-NMR), and mass spectrometry (MS). The best performances for the model were 39.45 and 35.16 recorded at epoch 1 for E. carotovora Erw5 and E. carotovora EMCC 1687, respectively. The coefficient (R2) of the training was more than 0.90. The highest antimicrobial production was recorded after 9 days at 25 °C and a pH of 6.2, at which more than 17 mm of the inhibition zone was obtained. The mass spectrum of antimicrobial agent (peak at R.T. = 3.433 of fraction 6) recorded two molecular ion peaks at m/z = 703.70 and m/z = 338.30, corresponding to molecular weights of 703.70 and 338.30 g/mol, respectively. The two molecular ion peaks matched well with the molecular formulas C29H53NO18 and C14H26O9, respectively, which were obtained from the elemental analysis result. A novel oligosaccharide from Streptomyces californics with potential activity against E. carotovora EMCC 1687 and E. carotovora Erw5 was successfully isolated, purified, and characterized.


Asunto(s)
Erwinia , Streptomyces , Antibacterianos/farmacología , Oligosacáridos/farmacología , Pectobacterium , Pectobacterium carotovorum , Espectroscopía Infrarroja por Transformada de Fourier
11.
Chemosphere ; 298: 134244, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35278440

RESUMEN

The microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innovational developing vision for MFC systems. The convergent results in most of the previous conventional studies (12,643 studies according to the WOS database) have reduced the value of MFCs by drawing an incomplete image for the performance of the systems. Therefore, this paper aimed to provide a comprehensive comparison between the highly reliable studies that innovatively developed the MFC systems and the conventional MFCs studies. The current paper discusses the novel MFCs development history, designs, efficiency, and challenges compared to conventional MFCs. The discussion has displayed the high efficiency of the novel MFCs in removing over 90% of substrates and generating power of 800 mW m-2. The paper also analyzed the literature trends, history and suggested recommendations for future studies. This is the first paper highlighting the substantial differences between the innovative and conventional MFC systems, nominating it to be a vital reference for novel MFCs studies in the future.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Electrodos
12.
Chemosphere ; 298: 134221, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35276102

RESUMEN

With the massive development of industrialization, multiple ecological contaminants in gaseous, liquid, and solid forms are vented into habitats, which is currently at the forefront of worldwide attention. Because of the possible damage to public health and eco-diversity, high-efficiency clearance of these environmental contaminants is a serious concern. Improved nanomaterials (NMs) could perform a significant part in the exclusion of contaminants from the atmosphere. MXenes, a class of two-dimensional (2D) compounds that have got tremendous consideration from researchers for a broad array of applications in a variety of industries and are viewed as a potential route for innovative solutions to identify and prevent a variety of obstreperous hazardous pollutants from environmental compartments due to their exceptional innate physicochemical and mechanical features, including high specific surface area, physiological interoperability, sturdy electrodynamics, and elevated wettability. This paper discusses the recent progress in MXene-based nanomaterials' applications such as environmental remediation, with a focus on their adsorption-reduction characteristics. The removal of heavy metals, dyes, and radionuclides by MXenes and MXene-based nanomaterials is depicted in detail, with the adsorption mechanism and regeneration potential highlighted. Finally, suggestions for future research are provided to ensure that MXenes and MXene-based nanomaterials are synthesized and applied more effectively.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nanoestructuras , Purificación del Agua , Adsorción , Purificación del Agua/métodos
13.
Chemosphere ; 297: 134225, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35259358

RESUMEN

The transition metal carbides/nitrides referred to as MXenes has emerged as a wonder material presenting newer opportunities owing to their unique properties such as high thermal and electrical conductivity, high negative zeta-potential and mechanical properties similar to the parent transition metal carbides/nitrides. These properties of MXenes can be utilized in various societal applications including for energy storage and energy conversion. In this focused review, we provide a ready glance into the evolutionary development of the MXene family and various efforts that are made globally towards property improvement and performance enhancement. Particular attention in this review is made to direct the attention of readers to the bright prospects of MXene in the energy storage and energy conversion process - which is extremely timely to tackle the current concern on climate change. The review concludes by offering fresh insights into the future research needs and challenges that need to be addressed to develop resilient energy solutions.

14.
Vaccines (Basel) ; 10(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214771

RESUMEN

Hemorrhagic septicemia (HS) caused by Pasteurella multocida B:2 and E:2 is among the fatal bacterial diseases in cattle and buffaloes that are economically valuable in Asian and African countries. The current work aims to study the prevalence of HS among buffaloes, cattle, sheep, and goats in 41 countries in 2005-2019. The data analysis revealed that 74.4% of the total infection rate in the world was distributed among cattle, followed by buffaloes (13.1%). The mortality of HS among cattle and buffaloes increased in 2017-2019 compared to the period between 2014 and 2016. The best measure to control the disease is through vaccination programs. Current commercial vaccines, including live-attenuated vaccines and inactivated vaccines, have some shortcomings and undesirable effects. Virus-like particles (VLPs) have more potential as a vaccine platform due to their unique properties to enhance immune response and the ability to use them as a platform for foreign antigens against infectious diseases. VLPs-based vaccines are among the new-generation subunit vaccine approaches that have been licensed for the human and veterinary fields. However, most studies are still in the late stages of vaccine evaluation.

15.
Sci Rep ; 12(1): 2682, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177640

RESUMEN

The self-healing of bio-concrete cracks and pores have been utilised worldwide to improve the properties of bio-concrete using different types of bacteria. Meanwhile, no published research was conducted to heal bio-foamed concrete bricks (B-FCB) pores using Bacillus tequilensis. Previous studies focused on the concentration of bacteria and neglect other factors that could affect the healing process. This research aimed to optimise the healing ratio of B-FCB pores using four factors: B. tequilensis concentration, concrete density, temperature and CO2 concentration. Initial water absorption (IWA) and water absorption (WA) were used as responses in statistical methods, namely, factorial and response surface methodology (RSM). B. tequilensis species was isolated from cement kiln dust, produced in a powder form, then subjected to simulate test using a special medium consisting of foamed concrete materials to check the survival ability in B-FCB. SEM, EDX, and XRD were used to investigate the healing process of B-FCB pores. The results revealed that the decrement ratios of IWA and WA of B-FCB were 52.8% and 29.1% compared to FCB, respectively. SEM results reflect the healing that occurred in B-FCB pores, mostly healed via precipitation of CaCO3 as demonstrated on the XRD results.

16.
Environ Res ; 209: 112831, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35123962

RESUMEN

The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/metabolismo , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Óxido de Zinc/farmacología
17.
Mar Pollut Bull ; 175: 113255, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35074593

RESUMEN

In this study, the climate change, tsunami and biodiversity for 336 km coastline endangered at the South China Sea was investigated with the review for the past, current and prediction models for the future. The hydraulic study of the coastal area was conducted using a well-established 2D numerical model suite Delft3D. The study revealed that the generated earthquakes at the convergence zone in the last century are small (Mw7.3), the possibility that a megathrust earthquake event in the SCS basin occurs in the future. The study area comprises a narrow strip of vegetation notably dominated by Casuarina equisetifolia with other coastal plants. Mangrove forests are found along the coastline and estuaries that are overlaid with marine alluvial soils. The current paper is the first comprehensive study of the South China Sea, and the findings increase the awareness among the public to understand the risk associated with environmental pollution.


Asunto(s)
Cambio Climático , Tsunamis , Biodiversidad , China , Estuarios
18.
Chemosphere ; 288(Pt 2): 132603, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34678351

RESUMEN

Biofilm represents one of the crucial factors for the emergence of multi-drug resistance bacterial infections. The high mortality, morbidity and medical device-related infections are associated with biofilm formation, which requires primarily seek alternative treatment strategies. Recently, nanotechnology has emerged as a promising method for eradicating bacterial biofilm-related infection. The efficacy of nanoparticles (NPs) against bacterial infections interest great attention, and the researches on the subject are rapidly increasing. However, the majority of studies continue to focus on the antimicrobial effects of NPs in vitro, while only a few achieved in vivo and very few registered as clinical trials. The present review aimed to organize the scattered available information regarding NPs approach to eradicate bacterial biofilm-related infections. The current review highlighted the advantages and disadvantages associated with this approach, in addition to the challenges that prevent reaching the clinical applications. It was appeared that the production of NPs either as antimicrobials or as drug carriers requires further investigations to overcome the obstacles associated with their kinetic and biocompatibility.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Biopelículas , Portadores de Fármacos , Humanos , Nanotecnología
19.
Environ Res ; 204(Pt A): 111926, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34461120

RESUMEN

The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 µL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 µl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.


Asunto(s)
Nanopartículas , Penicillium , Redes Neurales de la Computación , Plata , Esporas Fúngicas
20.
Chemosphere ; 291(Pt 1): 132862, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34774612

RESUMEN

In this article, the nickel (Ni2+) ions removal from the wastewater is reviewed. Adsorption is widely used to remove Ni2+ ions from waters and wastewaters. The usage of biomass is becoming more common for Ni2+ ions removal, while the commercial activated carbon from different agriculture wastes is preferred as an adsorbent for Ni2+ ion removal. The present review aimed to organise the available information regarding sustainable approaches for Ni2+ ions removal from water and wastewaters. These include adsorption by nanoparticles, bacterial biomass, and activated carbon from agriculture wastes, since they are the most common used for the Ni2+ ions removal. The bacterial and agricultural waste adsorbents exhibited high efficiency with a renewable source of biomass for Ni2+ ion removal. The biosorption capacity of the Ni2+ ions by the bacterial biomass range from 5.7 to 556 mg/g, while ranging from 5.8 to 150 mg/g by the activated carbon from different organic materials. The biosorption capacity of the nanocomposite adsorbents might reach to 400 mg/g. It appeared that the elimination of nickel ions need a selective biomass adsorbent such as the tolerant bacterial cells biomass which acts as a store for Ni2+ ion accumulations as a results for the active and passive transportation of the Ni2+ ions through the bacterial cell membrane.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Níquel , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...