Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 90(2): 737-751, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37094028

RESUMEN

PURPOSE: Automatic measurement of wrist cartilage volume in MR images. METHODS: We assessed the performance of four manually optimized variants of the U-Net architecture, nnU-Net and Mask R-CNN frameworks for the segmentation of wrist cartilage. The results were compared to those from a patch-based convolutional neural network (CNN) we previously designed. The segmentation quality was assessed on the basis of a comparative analysis with manual segmentation. The best networks were compared using a cross-validation approach on a dataset of 33 3D VIBE images of mostly healthy volunteers. Influence of some image parameters on the segmentation reproducibility was assessed. RESULTS: The U-Net-based networks outperformed the patch-based CNN in terms of segmentation homogeneity and quality, while Mask R-CNN did not show an acceptable performance. The median 3D DSC value computed with the U-Net_AL (0.817) was significantly larger than DSC values computed with the other networks. In addition, the U-Net_AL provided the lowest mean volume error (17%) and the highest Pearson correlation coefficient (0.765) with respect to the ground truth values. Of interest, the reproducibility computed using U-Net_AL was larger than the reproducibility of the manual segmentation. Moreover, the results indicate that the MRI-based wrist cartilage volume is strongly affected by the image resolution. CONCLUSIONS: U-Net CNN with attention layers provided the best wrist cartilage segmentation performance. In order to be used in clinical conditions, the trained network can be fine-tuned on a dataset representing a group of specific patients. The error of cartilage volume measurement should be assessed independently using a non-MRI method.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Muñeca , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Muñeca/diagnóstico por imagen , Reproducibilidad de los Resultados , Redes Neurales de la Computación , Cartílago
2.
Diagnostics (Basel) ; 13(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980428

RESUMEN

Magnetic resonance imaging (MRI) is an efficient, non-invasive diagnostic imaging tool for a variety of disorders. In modern MRI systems, the scanning procedure is time-consuming, which leads to problems with patient comfort and causes motion artifacts. Accelerated or parallel MRI has the potential to minimize patient stress as well as reduce scanning time and medical costs. In this paper, a new deep learning MR image reconstruction framework is proposed to provide more accurate reconstructed MR images when under-sampled or aliased images are generated. The proposed reconstruction model is designed based on the conditional generative adversarial networks (CGANs) where the generator network is designed in a form of an encoder-decoder U-Net network. A hybrid spatial and k-space loss function is also proposed to improve the reconstructed image quality by minimizing the L1-distance considering both spatial and frequency domains simultaneously. The proposed reconstruction framework is directly compared when CGAN and U-Net are adopted and used individually based on the proposed hybrid loss function against the conventional L1-norm. Finally, the proposed reconstruction framework with the extended loss function is evaluated and compared against the traditional SENSE reconstruction technique using the evaluation metrics of structural similarity (SSIM) and peak signal to noise ratio (PSNR). To fine-tune and evaluate the proposed methodology, the public Multi-Coil k-Space OCMR dataset for cardiovascular MR imaging is used. The proposed framework achieves a better image reconstruction quality compared to SENSE in terms of PSNR by 6.84 and 9.57 when U-Net and CGAN are used, respectively. Similarly, it demonstrates SSIM of the reconstructed MR images comparable to the one provided by the SENSE algorithm when U-Net and CGAN are used. Comparing cases where the proposed hybrid loss function is used against the cases with the simple L1-norm, the reconstruction performance can be noticed to improve by 6.84 and 9.57 for U-Net and CGAN, respectively. To conclude this, the proposed framework using CGAN provides the best reconstruction performance compared with U-Net or the conventional SENSE reconstruction techniques. The proposed framework seems to be useful for the practical reconstruction of cardiac images since it can provide better image quality in terms of SSIM and PSNR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...