Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Biol ; 84: e263534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35857954

RESUMEN

Honey is one of the best nutritious substances in the world, having different services in the body functions regulation. Ten elements (K, Na, Ca, Co, Cr, Mn, Mo, Ni, Pb, Se) from honey samples were analyzed from 80 different locations of Punjab and ten floras. The aim of the present study was to determine the quality and quantity of minerals and Physico-chemical analysis in honey. A flame photometer was used to measure the concentration of major minerals (K, Ca and Na). The concentration of micro minerals (Co, Cr, Mn, Mo, Ni, Pb and Se) was analyzed using Atomic Absorption Spectrometer. The concentration of macro-elements obtained was as follow (in ppm): K (166-1732), Na (107-418) and Ca (07-99), while the concentration of microelements (in ppm) Co (1-2), Cr (>1), Mn (<1), Mo (1.818), Ni (1.911), Pb (<1) and Se (1.968). The most abundant minerals were potassium, calcium and sodium, ranging between 396-810.5, 17.5-640.63 and 169.88-238.62 ppm, respectively. However, the trace mineral elements of honey were obtained in the order of decreasing Se > Co > Ni > Pb > Cr > Mo > Mn. The findings showed that all the heavy metals like Co, Cr, Ni and Pb were present in trace amounts and close to International Honey Quality Standard. The result of given honey samples represented highest value of moisture (31.23%), color (80 mm pfund), pH (8.23), acidity (72.02 meq/kg), electrical conductivity (0.85 ms/cm) and ash contents (0.83%).


Asunto(s)
Miel , Metales Pesados , Oligoelementos , Animales , Abejas , Miel/análisis , Plomo , Minerales/análisis , Oligoelementos/análisis
2.
Vet World ; 14(7): 1797-1803, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34475700

RESUMEN

BACKGROUND AND AIM: The literature is scant on the effect of 11-keto-ß-boswellic acid (KBA) on the liver of diabetes-induced mice. This study was designed to develop a rapid, sensitive, accurate, and inexpensive detection technique for evaluating the solubility of KBA obtained from the gum resin of Omani frankincense (Boswellia sacra) in the liver of streptozotocin-induced diabetic mice using Fourier transform infrared (FTIR) reflectance spectroscopy coupled with principal components analysis (PCA). It also aimed to investigate the effect of KBA on histological changes in the hepatocytes of diabetic mice. MATERIALS AND METHODS: Eighteen mice were assigned to the healthy control group, the diabetic control group, or the KBA-treated diabetic group. Liver tissue samples from all groups were scanned using an FTIR reflectance spectrophotometer in reflection mode. FTIR reflectance spectra were collected in the wavenumber range of 400-4000 cm-1 using an attenuated total reflectance apparatus. RESULTS: FTIR reflectance spectra were analyzed using PCA. The PCA score plot, which is an exploratory multivariate data set, revealed complete segregation among the three groups' liver samples based on changes in the variation of wavenumber position in the FTIR reflectance spectra, which indicated a clear effect of KBA solubility on treatments. Histological analysis showed an improvement in the liver tissues, with normal structures of hepatocytes exhibiting mild vacuolation in their cytoplasm. CONCLUSION: KBA improved the morphology of liver tissues in the diabetic mice and led to complete recovery of the damage observed in the diabetic control group. FTIR reflectance spectroscopy coupled with PCA could be deployed as a rapid, low-cost, and non-destructive detection method for evaluating treatment effects in diseased liver tissue based on the solubility of KBA.

3.
Pharmazie ; 72(2): 81-86, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29441857

RESUMEN

This work was aimed to explore the potential effect of hyaluronic acid (HA) initial concentration (7.0 - 14.0 % w/v) on cross-linking efficiency of HA hydrogels cross-linked with 1,4-butanediol diglycidyl ether (BDDE). The results revealed that the hydrogel prepared at 10.0 % HA concentration exhibited a slower degradation rate, a lower swelling ability and more regular porosity than those prepared at either lower or higher HA concentration. After four days incubating with hyaluronidase, the content of NAG (N-acetyl glucosamine) remaining in the 10.0 HA hydrogel was 25.1±1.9 % with respect to the total NAG content found in the original mass. In contrast, the hydrogels prepared at 7.0 % and 14.0 % HA concentration showed a less remaining content of NAG equaled to approximately 15.9±5.4 % and 19.5±2.6 % respectively. On the other hand, the swelling ability of tested hydrogels was steadily decreased with the increase of HA initial concentration until the 10.0 % HA hydrogel and then showed an opposite trend. Based on this finding, the 10.0 % HA hydrogel exhibited the lowest swelling ratio which was observed at 129±3.2 g/g in distilled water and at 116±2.4 g/g in phosphate buffer saline (PBS). The SEM images showed various morphologies within the entire range of tested hydrogels. However, the hydrogel prepared at 10.0 % HA concentration was more homogenous and appeared with narrower pore-size distribution ranged in diameter from less than 50 µm to approximately 300 µm. Finally, the effect of HA initial concentration was investigated by FTIR which confirmed that the 10.0 % HA hydrogel was subject to a greater loss of (- OH) at 3343 cm-1 than other hydrogels except the 11.0 % HA hydrogel. This phenomenon was probably attributed to the formation of pendants that allowed the 11.0 % HA hydrogel to appear with a lower peak intensity than the 10.0 % HA hydrogel in the FTIR spectra. In conclusion, the HA initial concentration plays a crucial role in determining the cross-linking efficiency of HA hydrogels cross-linked with BDDE.


Asunto(s)
Butileno Glicoles/química , Química Farmacéutica/métodos , Reactivos de Enlaces Cruzados/química , Ácido Hialurónico/química , Composición de Medicamentos/métodos , Hidrogeles , Microscopía Electrónica de Rastreo , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...