Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomic Med ; 7(10): e00954, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31475484

RESUMEN

BACKGROUND: Intellectual disability (ID) is a complex condition that can impact multiple domains of development. The genetic contribution to ID's etiology is significant, with more than 100 implicated genes and loci currently identified. The majority of such variants are rare and de novo genetic mutations. METHODS: We have applied whole-genome microarray to identify large, rare, clinically relevant copy number variants (CNVs). We have applied well-established algorithms for variants call. Quantitative polymerase chain reaction (qPCR) was applied to validate the variants using three technical replicates for each family member. To assess whether the copy number variation was due to balanced translocation or mosaicism, we further conducted droplet digital PCR (ddPCR) on the whole family. We have, as well, applied "critical-exon" mapping, human developmental brain transcriptome, and a database of known associated neurodevelopmental disorder variants to identify candidate genes. RESULTS: Here we present two siblings who are both impacted by a large terminal duplication and a deletion. Whole-genome microarray revealed an 18.82 megabase (MB) duplication at terminal locus (7q34-q36.3) of chromosome 7 and a 3.90 MB deletion impacting the terminal locus (15q26.3) of chromosome 15. qPCR and ddPCR experiments confirmed the de novo origin of the variants and the co-occurrence of these two de novo events among the siblings, but their absence in both parents, implicates an unbalanced translocation that could have mal-segregated among the siblings or a possible germline mosaicism. These terminal events impact IGF1R, CNTNAP2, and DPP6, shown to be strongly associated with neurodevelopmental disorders. Detailed clinical examination of the siblings revealed the presence of both shared and distinct phenotypic features. CONCLUSIONS: This study identified two large rare terminal de novo events impacting two siblings. Further phenotypic investigation highlights that even in the presence of identical large high penetrant variants, spectrum of clinical features can be different between the siblings.


Asunto(s)
Discapacidad Intelectual/diagnóstico , Niño , Preescolar , Cromosomas Humanos Par 15 , Cromosomas Humanos Par 7 , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Femenino , Eliminación de Gen , Duplicación de Gen , Variación Genética , Gónadas/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Proteínas de la Membrana/genética , Mosaicismo , Proteínas del Tejido Nervioso/genética , Fenotipo , Canales de Potasio , Receptor IGF Tipo 1/genética
2.
BMC Med Genet ; 19(1): 34, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499638

RESUMEN

BACKGROUND: Congenital hydrocephalus (CH) results from the accumulation of excessive amounts of cerebrospinal fluid (CSF) in the brain, often leading to severe neurological impairments. However, the adverse effects of CH can be reduced if the condition is detected and treated early. Earlier reports demonstrated that some CH cases are caused by mutations in L1CAM gene encoding the neural cell adhesion molecule L1. On the other hand, recent studies have implicated the multiple PDZ domain (MPDZ) gene in some severe forms of CH, inherited in an autosomal recessive pattern. METHODS: In this study, whole-exome and Sanger sequencing were performed on a 9 months old Emirati child clinically diagnosed by CH. In addition, in silico, cellular, and molecular assays have been conducted to confirm pathogenicity of the identified variants and to establish disease mechanism. RESULTS: Whole exome sequencing revealed two compound heterozygous novel variants (c.394G > A and c.1744C > G) in the affected child within the MPDZ gene. Segregation analysis revealed that each of the parents is heterozygous for one of the two variants and therefore passed that variant to their child. The outcome of the in silico and bioinformatics analyses came in line with the experimental data, suggesting that the two variants are most likely disease causing. CONCLUSIONS: The compound heterozygous variants identified in this study are the most likely cause of CH in the affected child. The study further confirms MPDZ as a gene underlying some CH cases.


Asunto(s)
Heterocigoto , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Dominios PDZ/genética , Secuencia de Aminoácidos , Encéfalo/metabolismo , Adhesión Celular , Genes Recesivos , Variación Genética , Células HEK293 , Células HeLa , Humanos , Lactante , Masculino , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Linaje , Conformación Proteica , Análisis de Secuencia de ADN , Secuenciación del Exoma
3.
Am J Med Genet A ; 173(7): 1773-1781, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28462984

RESUMEN

Desbuquois syndrome is a heterogeneous rare type of skeletal dysplasia with a prevalence of less than 1 in 1,000,000 individuals. It is characterized by short-limbed dwarfism, dysmorphic facial features, and severe joint laxity. Two types have been recognized depending on the presence of distinctive carpal and phalangeal features. Mutations in the calcium activated nucleotidase 1 (CANT1) have been found to be responsible for type I and lately, for the Kim type of Desbuquois dysplasia. In addition, a number of Desbuquois dysplasia type II patients have been attributed to mutations in xylosyltransferase 1, encoded by the XYLT1 gene, an enzyme that catalyzes the transfer of UDP-xylose (a marker of cartilage destruction) to serine residues of an acceptor protein, essential for the biosynthesis of proteoglycans. We report here a patient with features consistent with Desbuquois dysplasia II including short long bones, flat face, mild monkey wrench appearance of the femoral heads. Whole exome sequencing revealed a novel homozygous duplication of a single nucleotide in XYLT1 gene (c.2169dupA). This variant is predicted to result in a frame-shift and stop codon p.(Val724Serfs*10) within the xylosyltransferase catalytic domain. Immunoflourescence staining of HeLa cells transfected with mutated XYLT1 plasmids constructs of the current as well as the previously reported missense mutations (c.1441C>T, p.(Arg481Trp) and c.1792C>T, p.(Arg598Cys)), revealed aberrant subcellular localization of the enzyme compared to wild-type, suggesting endoplasmic reticulum retention of these mutants as the likely mechanism of disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...