Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637978

RESUMEN

AIMS: To perform a systematic review of studies that sought to identify diagnostic biomarkers for the diagnosis of cardiovascular diseases (CVDs) and diabetes mellitus (DM), which could be used in low- and middle-income countries (LMICs) where there is a lack of diagnostic equipment, treatments and training. MATERIALS AND METHODS: Papers were sourced from six databases: the British Nursing Index, Google Scholar, PubMed, Sage, Science Direct and Scopus. Articles published between January 2002 and January 2023 were systematically reviewed by three reviewers and appropriate search terms and inclusion/exclusion criteria were applied. RESULTS: A total of 18 studies were yielded, as well as 234 diagnostic biomarkers (74 for CVD and 160 for DM). Primary biomarkers for the diagnosis of CVDs included growth differentiation factor 15 and neurogenic locus notch homologue protein 1 (Notch1). For the diagnosis of DM, alpha-2-macroglobulin, C-peptides, isoleucine, glucose, tyrosine, linoleic acid and valine were frequently reported across the included studies. Advanced analytical techniques, such as liquid chromatography mass spectrometry, enzyme-linked immunosorbent assays and vibrational spectroscopy, were also repeatedly reported in the included studies and were utilized in combination with traditional and alternative matrices such as fingernails, hair and saliva. CONCLUSIONS: While advanced analytical techniques are expensive, laboratories in LMICs should carry out a cost-benefit analysis of their use. Alternatively, laboratories may want to explore emerging techniques such as infrared, Fourier transform-infrared and near-infrared spectroscopy, which allow sensitive noninvasive analysis.

2.
Cureus ; 16(2): e54264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38500942

RESUMEN

Cardiovascular disease (CVDs) has been perceived as a 'man's disease', and this impacted women's referral to CVD diagnosis and treatment. This study systematically reviewed the evidence regarding gender bias in the diagnosis, prevention, and treatment of CVDs. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. We searched CINAHL, PubMed, Medline, Web of Science, British Nursing Index, Scopus, and Google Scholar. The included studies were assessed for quality using risk bias tools. Data extracted from the included studies were exported into Statistical Product and Service Solutions (SPSS, v26; IBM SPSS Statistics for Windows, Armonk, NY), where descriptive statistics were applied. A total of 19 studies were analysed. CVDs were less reported among women who either showed milder symptoms than men or had their symptoms misdiagnosed as gastrointestinal or anxiety-related symptoms. Hence, women had their risk factors under-considered by physicians (especially by male physicians). Subsequently, women were offered fewer diagnostic tests, such as coronary angiography, ergometry, electrocardiogram (ECG), and cardiac enzymes, and were referred to less to cardiologists and/or hospitalisation. Furthermore, if hospitalised, women were less likely to receive a coronary intervention. Similarly, women were prescribed cardiovascular medicines than men, with the exception of antihypertensive and anti-anginal medicines. When it comes to the perception of CVD, women considered themselves at lower risk of CVDs than men. This systematic review showed that women were offered fewer diagnostic tests for CVDs and medicines than men and that in turn influenced their disease outcomes. This could be attributed to the inadequate knowledge regarding the differences in manifestations among both genders.

3.
PLoS One ; 17(7): e0271277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35901074

RESUMEN

The Internet of Things (IoT) and its relevant advances have attracted significant scholarly, governmental, and industrial attention in recent years. Since the IoT specifications are quite different from what the Internet can deliver today, many groundbreaking techniques, such as Mobile Ad hoc Networks (MANETs) and Wireless Sensor Networks (WSN), have gradually been integrated into IoT. The Routing Protocol for Low power and Lossy network (RPL) is the de-facto IoT routing protocol in such networks. Unfortunately, it is susceptible to numerous internal attacks. Many techniques, such as cryptography, Intrusion Detection System (IDS), and authorization have been used to counter this. The large computational overhead of these techniques limits their direct application to IoT nodes, especially due to their low power and lossy nature. Therefore, this paper proposes a Trust-based Hybrid Cooperative RPL protocol (THC-RPL) to detect malicious Sybil nodes in an RPL-based IoT network. The proposed technique is compared and evaluated with state-of-the-art and is found to outperform them. It detects more attacks while maintaining the packet loss ratio in the range of 15-25%. The average energy consumption of the nodes also remains in the ratio of 60-80 mj. There is approximately 40% more energy conservation at node level with an overall 50% increase in network lifetime. THC-RPL has 10% less message exchange and 0% storage costs.


Asunto(s)
Redes de Comunicación de Computadores , Internet de las Cosas , Algoritmos , Confianza , Tecnología Inalámbrica
4.
PLoS One ; 16(11): e0258279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34748568

RESUMEN

One of the significant challenges in the Internet of Things (IoT) is the provisioning of guaranteed security and privacy, considering the fact that IoT devices are resource-limited. Oftentimes, in IoT applications, remote users need to obtain real-time data, with guaranteed security and privacy, from resource-limited network nodes through the public Internet. For this purpose, the users need to establish a secure link with the network nodes. Though the IPv6 over low-power wireless personal area networks (6LoWPAN) adaptation layer standard offers IPv6 compatibility for resource-limited wireless networks, the fundamental 6LoWPAN structure ignores security and privacy characteristics. Thus, there is a pressing need to design a resource-efficient authenticated key exchange (AKE) scheme for ensuring secure communication in 6LoWPAN-based resource-limited networks. This paper proposes a resource-efficient secure remote user authentication scheme for 6LoWPAN-based IoT networks, called SRUA-IoT. SRUA-IoT achieves the authentication of remote users and enables the users and network entities to establish private session keys between themselves for indecipherable communication. To this end, SRUA-IoT uses a secure hash algorithm, exclusive-OR operation, and symmetric encryption primitive. We prove through informal security analysis that SRUA-IoT is secured against a variety of malicious attacks. We also prove the security strength of SRUA-IoT through formal security analysis conducted by employing the random oracle model. Additionally, we prove through Scyther-based validation that SRUA-IoT is resilient against various attacks. Likewise, we demonstrate that SRUA-IoT reduces the computational cost of the nodes and communication overheads of the network.


Asunto(s)
Comunicación , Seguridad Computacional/normas , Internet de las Cosas/tendencias , Interfaz Usuario-Computador , Algoritmos , Humanos , Internet/normas , Privacidad , Telecomunicaciones/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...