Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metab Brain Dis ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115642

RESUMEN

The simultaneous hyperexcitability of the neural network is the most well-known manifestation of epilepsy that causes recurrent seizures. The current study was aimed to examine any potential safety benefits of the culture filtrate of Trichoderma harzianum (ThCF) to ameliorate damaged histoarchitecture of the brain in epileptic rats by assessing seizure intensity scale and behavioral impairments and follow up the spontaneous motor seizures during status epilepticus phases in rats. Twenty-four rats were divided into four groups; control (C), epileptic (EP) valproic acid-treated epileptic (EP-VPA), and epileptic treated with T. harzianum cultured filtrate (ThCF). In addition to a seizure intensity score and behavioral tests, routine H&E and Golgi-Copsch histopathology, were used to examine the cell somas, dendrites, axons, and neural spines. ThCF treatment increased activity and recorded movements during grooming, rearing, and ambulation frequency. Brain tissues of epileptic rats exhibited detached meninges, hypercellularity, mild edema in the cortex and markedly degenerated neurons, degenerated glial cells, and microcyst formation in the hippocampus. Moreover, brains of EP-ThCF were noticed with average blood vessels, and increased dendritogenesis. The current data revealed some of negative effects of epileptogenesis brought on by seizure intensity score and retarded histopathological alterations in the hippocampus. Therefore, the study is forecasting to identify novel active components from the metabolites of T. harzianum with a crucial therapeutic role in various disorders.

2.
PeerJ ; 12: e16870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563014

RESUMEN

The brinjal fruit and shoot borer (BFSB), Leucinodes orbonalis Guenée (Lepidoptera: Crambidae), is a very detrimental pest that causes significant economic losses to brinjal crop worldwide. Infested brinjal fruits were collected from vegetable fields located at the ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India, during two consecutive seasons (2021-2022). The larvae of the pest were brought to the laboratory and reared under controlled conditions of 25 ± 0.5 °C and 70 ± 5% relative humidity, for the emergence of parasitoids. In addition, the survey of Hymenoptera parasitoids in brinjal was conducted utilizing a sweep net and yellow pan trap over the course of two seasons. The results reveal that five parasitoid species were emerged from L. orbonalis viz., Apanteles hemara Nixon, 1965, Bracon greeni Ashmead 1896 (Hymenoptera: Braconidae), Goryphus nursei (Cameron, 1907), Trathala flavoorbitalis (Cameron, 1907) (Hymenoptera: Ichneumonidae) and Spalangia gemina Boucek 1963 (Hymenoptera: Spalangiidae). Out of these, A. hemara and S. gemina were documented as new occurrences in Delhi. Additionally, A. hemara was recorded for the first time as a parasite on L. orbonalis. Trathala flavoorbitalis was observed during both seasons and exhibited higher parasitism reaching 15.55% and 18.46% in July and August 2022, respectively. However, the average parasitism (%) recorded by A. hemara, B. greeni, G. nursei, T. flavoorbitalis and S. gemina was 3.10%, 1.76%, 1.10%, 9.28% and 1.20% respectively. Furthermore, the findings showed a significant (p ≤ 0.01) strongly positive correlation between fruit infestation (%) by L. orbonalis and parasitism (%). The survey indicates the presence of a broad group (19 families and 60 species) of Hymenoptera parasitoids in the brinjal crop ecosystem in Delhi which could be valuable in biological control. In light of these results, this study revealed that A. hemara and other parasitoids identified in this study alongside T. flavoorbitalis would be ideal biocontrol agents within the integrated pest management (IPM) program of BFSB in Delhi.


Asunto(s)
Himenópteros , Mariposas Nocturnas , Solanum melongena , Humanos , Animales , Solanum melongena/parasitología , Ecosistema , Complejo Hierro-Dextran , Mariposas Nocturnas/parasitología , Biodiversidad
3.
Biodivers Data J ; 12: e115845, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481856

RESUMEN

The migratory locust, Locustamigratoria (L.), a significant grasshopper species known for its ability to form large swarms and cause extensive damage to crops and vegetation, is subject to the influence of climate change. This research paper employs geographic information system (GIS) and MaxEnt ecological modelling techniques to assess the impact of climate change on the distribution patterns of L.migratoria. Occurrence data and environmental variables are collected and analysed to create predictive models for the current and future distribution of the species. The study highlights the crucial role of climate factors, particularly temperature and precipitation, in determining the locust's distribution. The MaxEnt models exhibit high-performance indicators, accurately predicting the potential habitat suitability of L.migratoria. Additionally, specific bioclimatic variables, such as mean temperature and annual precipitation, are identified as significant factors influencing the species' presence. The generated future maps indicate how this species will invade new regions especially in Europe. Such results predict the risk of this destructive species for many agriculture communities as a direct result of a warming world. The research provides valuable insights into the complex relationship between locust distribution and environmental factors, enabling the development of effective strategies for locust management and early warning systems to mitigate the impact on agriculture and ecosystems.

4.
Plants (Basel) ; 13(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276766

RESUMEN

Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23's intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies.

5.
Insects ; 14(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36835689

RESUMEN

Spogostylum ocyale (Wiedemann 1828) is a large robust species of bee fly (family Bombyliidae), known to be a larval ectoparasitoid as well as an important flower pollinator as an adult. This species has become extremely rare or has disappeared from many of its historic habitats due to substantial changes in floral and faunal compositions in recent years. Climate change and urbanisation, together with other anthropogenic activities, may be to blame for these changes. Distribution modelling based on environmental variables together with known occurrences is a powerful tool in analytical biology, with applications in ecology, evolution, conservation management, epidemiology and other fields. Based on climatological and topographic data, the current and future distributions of the parasitoid in the Middle East region was predicted using the maximum entropy model (Maxent). The model performance was satisfactory (AUC mean = 0.834; TSS mean = 0.606) and revealed a good potential distribution for S. ocyale featured by the selected factors. A set of seven predictors was chosen from 19 bioclimatic variables and one topographic variable. The results show that the distribution of S. ocyale is mainly affected by the maximum temperature of the warmest period (Bio5) and temperature annual range (Bio7). According to the habitat suitability map, coastal regions with warm summers and cold winters had high to medium suitability. However, future scenarios predict a progressive decline in the extent of suitable habitats with global climate warming. These findings lead to robust conservation management measures in current or future conservation planning.

6.
Parasitol Res ; 121(12): 3467-3476, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36136139

RESUMEN

Rhipicephalus annulatus is a tick species of veterinary importance due to its potential to transmit babesiosis to cattle. This species has a Holarctic distribution with some Afrotropical records and is one-host species of veterinary importance. This study was carried out from September 2021 to February 2022 at 6 Egyptian collection sites, and a total of 1150 cattle were scanned randomly to collect ticks. A total of 1095 tick specimens were collected and identified as R. annulatus using taxonomic keys. Males were found on all parts of the cattle except the head and around the eyes, but females were found on all parts; in addition, the highest number of specimens was gathered from the udder, (neck and chest), and belly. Maximum entropy (MaxEnt) modeling was used to predict the potential global distribution of R. annulatus. The MaxEnt model performed better than random with an average test area under the curve (AUC) value of 0.96, and model predictions were significantly better than random and gave (AUC) ratios above the null expectations in the partial receiver operating characteristic (pROC) analyses (P < 0.001). Based on correlation analyses, a set of 9 variables was selected for species from 15 bioclimatic and 5 normalized difference vegetation index (NDVI) variables. The study showed that the current distribution of R. annulatus is estimated to occur across Asia, Africa, Europe, South America, and North America. Annual mean temperature (Bio1) and median NDVI had the highest effect on the distribution of this species. The environmentally suitable habitat for R. annulatus sharply increased with increasing annual mean temperature (Bio1). These results can be used for making effective control planning decisions in areas suitable to this vector of many diseases worldwide.


Asunto(s)
Anaplasmosis , Babesiosis , Enfermedades de los Bovinos , Ixodidae , Rhipicephalus , Infestaciones por Garrapatas , Femenino , Masculino , Bovinos , Animales , Ecosistema , Enfermedades de los Bovinos/prevención & control , Infestaciones por Garrapatas/veterinaria
7.
Insects ; 13(5)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35621818

RESUMEN

Beekeeping is essential for the global food supply, yet honeybee health and hive numbers are increasingly threatened by habitat alteration, climate change, agrochemical overuse, pathogens, diseases, and insect pests. However, pests and diseases that have unknown spatial distribution and influences are blamed for diminishing honeybee colonies over the world. The greater wax moth (GWM), Galleria mellonella, is a pervasive pest of the honeybee, Apis mellifera. It has an international distribution that causes severe loss to the beekeeping industry. The GWM larvae burrow into the edge of unsealed cells that have pollen, bee brood, and honey through to the midrib of the wax comb. Burrowing larvae leave behind masses of webs that cause honey to leak out and entangle emerging bees, resulting in death by starvation, a phenomenon called galleriasis. In this study, the maximum entropy algorithm implemented in (Maxent) model was used to predict the global spatial distribution of GWM throughout the world. Two representative concentration pathways (RCPs) 2.6 and 8.5 of three global climate models (GCMs), were used to forecast the global distribution of GWM in 2050 and 2070. The Maxent models for GWM provided a high value of the Area Under Curve equal to 0.8 ± 0.001, which was a satisfactory result. Furthermore, True Skilled Statistics assured the perfection of the resultant models with a value equal to 0.7. These values indicated a significant correlation between the models and the ecology of the pest species. The models also showed a very high habitat suitability for the GWM in hot-spot honey exporting and importing countries. Furthermore, we extrapolated the economic impact of such pests in both feral and wild honeybee populations and consequently the global market of the honeybee industry.

8.
Molecules ; 27(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630573

RESUMEN

The house fly Musca domestica L. is one of the medical and veterinary pests that can develop resistance to different insecticides. Mixing insecticides is a new strategy for accelerating pest control; furthermore, it can overcome insect resistance to insecticides. This study aims to evaluate three insecticides, chlorfenapyr, abamectin, and lambda-cyhalothrin, individually and their binary mixtures against 2nd instar larvae of M. domestica laboratory strain. Chlorfenapyr exhibited the most toxic effect on larvae, followed by abamectin then the lambda-cyhalothrin. The half-lethal concentrations (LC50) values were 3.65, 30.6, and 94.89 ppm, respectively. These results revealed that the high potentiation effect was the mixture of abamectin/chlorfenapyr in all the mixing ratios. In contrast, the tested combination of lambda-cyhalothrin/abamectin showed an antagonism effect at all mixing ratios against house fly larvae. The total protein, esterases, glutathione-S-transferase (GST), and cytochrome P-450 activity were also measured in the current investigation in the larvae treated with chlorfenapyr. Our results indicate that GST may play a role in detoxifying chlorfenapyr in M. domestica larvae. The highest activity of glutathione-S-transferase was achieved in treated larvae with chlorfenapyr, and an increase in cytochrome P-450 activity in the larvae was observed post-treatment with Abamectin/chlorfenapyr.


Asunto(s)
Moscas Domésticas , Insecticidas , Animales , Sistema Enzimático del Citocromo P-450 , Glutatión , Resistencia a los Insecticidas , Insecticidas/farmacología , Ivermectina/análogos & derivados , Larva , Nitrilos , Piretrinas , Transferasas
9.
J Fungi (Basel) ; 8(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35448627

RESUMEN

Herein, silver nanoparticles (Ag-NPs) were synthesized using an environmentally friendly approach by harnessing the metabolites of Aspergillus niger F2. The successful formation of Ag-NPs was checked by a color change to yellowish-brown, followed by UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), Transmission electron microscopy (TEM), and X-ray diffraction (XRD). Data showed the successful formation of crystalline Ag-NPs with a spherical shape at the maximum surface plasmon resonance of 420 nm with a size range of 3-13 nm. The Ag-NPs showed high toxicity against I, II, III, and IV instar larvae and pupae of Aedes aegypti with LC50 and LC90 values of 12.4-22.9 ppm and 22.4-41.4 ppm, respectively under laboratory conditions. The field assay exhibited the highest reduction in larval density due to treatment with Ag-NPs (10× LC50) with values of 59.6%, 74.7%, and 100% after 24, 48, and 72 h, respectively. The exposure of A. aegypti adults to the vapor of burning Ag-NPs-based coils caused a reduction of unfed individuals with a percentage of 81.6 ± 0.5% compared with the positive control, pyrethrin-based coils (86.1 ± 1.1%). The ovicidal activity of biosynthesized Ag-NPs caused the hatching of the eggs with percentages of 50.1 ± 0.9, 33.5 ± 1.1, 22.9 ± 1.1, and 13.7 ± 1.2% for concentrations of 5, 10, 15, and 20 ppm, whereas Ag-NPs at a concentration of 25 and 30 ppm caused complete egg mortality (100%). The obtained data confirmed the applicability of biosynthesized Ag-NPs to the biocontrol of A. aegypti at low concentrations.

10.
Vet Med (Praha) ; 67(4): 179-189, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39170808

RESUMEN

The present study was undertaken to investigate the possible stimulating effects of Nigella sativa (N. sativa) honey, natural Saudi Sider honey, and honeybee pollen to the in vitro maturation (IVM) medium of sheep oocytes on their subsequent development. Hence, immature oocytes were exposed to various concentrations of natural Nigella sativa (N. sativa), and Saudi Sider honey (5, 10, and 20%), as well as honeybee pollen (1, 10, 50 µg/ml) during an in vitro maturation period (24 hours). After the exposure time, the maturation rate, glutathione (GSH) concentration, and candidate gene expression (GDF-9, MPF, CMOS, IGF-1, and BAX) were evaluated. Our results showed that the maturation rate was higher in the groups challenged with the lowest level of the bee products (5% and 1 µg/ml) when compared with that in the control group; where the mean number of oocytes in the metaphase II stage reached 0.360 for the honeybee pollen-treated group, 0.293 for the N. sativa-treated group, and 0.203 for the natural Saudi Sider honey-treated group. The glutathione level was significantly increased in the group exposed to N. sativa honey when compared with the other groups. Concerning the gene expression results, the Saudi Sider honey treatment showed the best results for all the genes except the CMOS gene, which was significantly higher than the GI and GII groups and lower than the GIV group and the BAX gene which did not show a significant difference when compared with the other groups. In conclusion, the addition of natural honey and honeybee pollen at a low concentration to an IVM medium improved the in vitro maturation rate, increased the glutathione level, and gene expression of the in vitro matured ovine oocytes.

11.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34680736

RESUMEN

BACKGROUND: The Red Sea sponges have been endorsed as a plentiful source of bioactive compounds with promising anti-cancer and anti-inflammatory activities; therefore, exploring their potential as a source of anti-cancer metabolites has stimulated a growing research interest. PURPOSE: To investigate the anti-cancer and anti-inflammatory potential of the Red Sea sponges, in their bulk and silver nanostructure. Metabolomics analysis of the selected sponge followed by molecular docking studies, will be conducted to explore and predict the secondary metabolites that might provide its capability of inhibiting cancer. MATERIALS AND METHODS: We prepared a chloroform extract (CE) and ethyl acetate extract (EE) of the Red Sea sponge Phyllospongia lamellosa synthesized silver nanoparticles. The prepared silver nanoparticles were characterized through UV-vis spectrophotometric, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses. Testing for their anti-cancer activities was performed against MCF-7, MDB-231, and MCF-10A cells. Anti-inflammatory activity against COX-1 and 2 was assessed. Furthermore, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis and molecular docking were also applied.

12.
Saudi J Biol Sci ; 28(10): 5667-5673, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34588878

RESUMEN

OBJECTIVES: The species Palarus latifrons (bee pirates) has been recorded in Saudi Arabia as an invasive species. This pest can destroy honey bee colonies under certain conditions. The origin of this species in Africa and it has a good ability to adapt to desert conditions. Studies on this species are very few but its current distribution in the Arabian deserts is mainly in the Arabian Gulf countries. This study presents maps for the possible expansion of this species to invade other desert areas in the Arabian countries' under current and near-future conditions (2030). METHODS: This pest is a solitary insect with high activity during summer. It is hypothesized that summer conditions and especially temperature are the limiting factor for its distribution in the deserts. The analysis depended on generating maps based on temperatures during summer and based on two bioclimatic factors. Maxent and the geographical information system (GIS) were used to perform the analysis. RESULTS AND CONCLUSIONS: All maps showed the high ability of this pest to spread in the Gulf countries. In North Africa: south Egypt and Libya, and some parts of Algeria showed suitability for Palarus. The invasion of this pest towards North Africa can happen mostly due to trading activities with Gulf countries especially materials containing soil. Continues monitoring for the activity of Palarus in the risk areas is highly advised.

13.
J Am Chem Soc ; 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141579

RESUMEN

Bending and folding are important stereoscopic geometry parameters of one-dimensional (1D) nanomaterials, yet the precise control of them has remained a great challenge. Herein, a surface-confined winding assembly strategy is demonstrated to regulate the stereoscopic architecture of uniform 1D mesoporous SiO2 (mSiO2) nanorods. Based on this brand-new strategy, the 1D mSiO2 nanorods can wind on the surface of 3D premade nanoparticles (sphere, cube, hexagon disk, spindle, rod, etc.) and inherit their surface topological structures. Therefore, the mSiO2 nanorods with a diameter of ∼50 nm and a variable length can be bent into arc shapes with variable radii and radians, as well as folded into 60, 90, 120, and 180° angular convex corners with controllable folding times. Additionally, in contrast to conventional core@shell structures, this winding structure induces partial exposure and accessibility of the premade nanoparticles. The functional nanoparticles can exhibit large accessible surface and efficient energy exchanges with the surroundings. As a proof of concept, winding-structured CuS&mSiO2 nanocomposites are fabricated, which are made up of a 100 nm CuS nanosphere and the 1D mSiO2 nanorods with a diameter of ∼50 nm winding the nanosphere in the perimeter. The winding structured nanocomposites are demonstrated to have fourfold photoacoustic imaging intensity compared with the conventional core@shell nanostructure with an inaccessible core because of the greatly enhanced photothermal conversion efficiency (increased by ∼30%). Overall, our work paves the way to the design and synthesis of 1D nanomaterials with controllable bending and folding, as well as the formation of high-performance complex nanocomposites.

14.
Nat Commun ; 10(1): 4387, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558724

RESUMEN

Despite the importance of nanoparticle's multipods topology in multivalent-interactions enhanced nano-bio interactions, the precise manipulation of multipods surface topological structures is still a great challenge. Herein, the surface-kinetics mediated multi-site nucleation strategy is demonstrated for the fabrication of mesoporous multipods with precisely tunable surface topological structures. Tribulus-like tetra-pods Fe3O4@SiO2@RF&PMOs (RF = resorcinol-formaldehyde resin, PMO = periodic mesoporous organosilica) nanocomposites have successfully been fabricated with a centering core@shell Fe3O4@SiO2@RF nanoparticle, and four surrounding PMO nanocubes as pods. By manipulating the number of nucleation sites through mediating surface kinetics, a series of multipods mesoporous nanocomposites with precisely controllable surface topological structures are formed, including Janus with only one pod, nearly plane distributed dual-pods and tri-pods, three-dimensional tetrahedral structured tetra-pods, etc. The multipods topology endows the mesoporous nanocomposites enhanced bacteria adhesion ability. Particularly, the tribulus-like tetra-pods mesoporous nanoparticles show ~100% bacteria segregation and long-term inhibition over 90% after antibiotic loading.


Asunto(s)
Adhesión Bacteriana/fisiología , Formaldehído/química , Nanocompuestos/química , Nanopartículas/química , Resorcinoles/química , Escherichia coli/fisiología , Escherichia coli/ultraestructura , Cinética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanocompuestos/ultraestructura , Nanopartículas/ultraestructura , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
15.
Environ Sci Pollut Res Int ; 26(23): 24010-24019, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31222653

RESUMEN

Actinomycetes are a group of the Gram-positive bacteria famous for their antimicrobial, anticancer, anti-parasitic, and anti-inflammatory activities. This study aimed to investigate the efficacy of two bacterial extracts derived from two soil actinomycete strains (S19 and G30) against carbon tetrachloride (CCl4)-induced nephrotoxicity in experimental rats. Sixty-four male rats were assigned to four groups of 16 rats in each group. The 1st group was kept as a normal (control) group and given corn oil combined with the used production medium, while the 2nd group received only CCl4 (CCl4 group). On the other hand, the 3rd group (CCl4+S19) was administered CCl4 and the extract of the actinomycete strain S19 and the 4th group (CCl4+G30) received CCl4 and the extract of the actinomycete strain G30, both treatments for 8 weeks. The results revealed that the two actinomycete extracts S19 and G30 could significantly (p < 0.01) lower the elevated levels of serum creatinine, urea, and uric acid caused by the CCl4 administration. Additionally, the two actinomycete extracts improved the decreased serum total protein. Interestingly, treatment of the CCl4-intoxicated rats with S19 and G30 extracts remarkably reversed the lowered renal glutathione (GSH), glutathione peroxidase (GSH-Px), peroxidase (Px) and superoxide dismutase (SOD) activities, and the elevated lipid peroxidation (LPO) levels. The histopathological examination of the treated kidney revealed that the two actinomycete extracts improved rats against CCl4-induced kidney lesions. The present results suggested that the protective effect of the two actinomycete extracts may rely on its effect on reducing the oxidative stress and improving the antioxidant defense system.


Asunto(s)
Actinobacteria/metabolismo , Factores Biológicos/metabolismo , Tetracloruro de Carbono/toxicidad , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Riñón/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
16.
Environ Sci Pollut Res Int ; 26(4): 3834-3847, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30539391

RESUMEN

The aim of this study was to investigate the potential protective effect of two extracts derived from two soil actinomycete strains, designated S19 and G30, against CCl4-induced hepatotoxicity in male rats. Sixty-four male rats were divided into four groups of 16 rats per group. The first group was a control group given corn oil and the nutritive medium which is composed of a mixture of the two used media. The second group received CCl4 only, the third group was administered CCl4 and the extract S19, and the fourth group was administered CCl4 and the extract G30. The results were taken after a treatment period of 8 weeks. Our data demonstrated that the two actinomycete extracts significantly (P < 0.01) lowered the CCl4-induced elevation of serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) after 8 weeks of treatment. The extract S19 had no effect on serum lactate dehydrogenase (LDH) and total bilirubin, whereas the extract G30 significantly decreased (P < 0.01) the elevated levels of these parameters in the serum, especially after 4 weeks of treatment. The levels of hepatic glutathione (GSH), glutathione peroxidase (GSH-Px), peroxidase (Px), catalase (CAT), and superoxide dismutase (SOD) significantly increased (P < 0.01), while those of malondialdehyde (MDA) markedly decreased in rats treated with the two extracts. Furthermore, histopathological lesions in the liver, including necrosis, inflammatory cell infiltration, hydropic degeneration, and congestion of the central vein, were partially reversed by treatment with the two microbial extracts. Our results provided evidence for the protective effect of the two used actinomycete extracts against CCl4-induced liver damage occurred through the reduction of oxidative stress and improvement of antioxidant defense markers.


Asunto(s)
Actinobacteria/química , Antioxidantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/aislamiento & purificación , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Pruebas de Función Hepática , Masculino , Ratas
17.
Chem Sci ; 9(39): 7705-7714, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30393532

RESUMEN

Alumina materials have widely been used in industrial fields, such as catalysis and adsorption. However, due to the fast sol-gel process and complicated crystalline-phase transformation, the synthesis of alumina materials with both highly ordered mesostructures and crystallized frameworks remains a great challenge. Herein, we report a novel vesicle-aggregation-assembly strategy to prepare highly ordered mesoporous γ-alumina microspheres with unique shifted double-diamond networks for the first time, by using diblock copolymer poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA) as a template and aluminum isopropoxide as a precursor in a tetrahydrofuran (THF)/hydrochloric acid binary solvent. During the gradual evaporation of THF and H2O, the as-made Al3+-based gel/PEO-b-PMMA composites can be obtained through a co-assembly process based on the hydrogen bonding interaction between hydroxyl groups of alumina oligomers and PEO segments of the diblock copolymers. The formed composites exhibit a spherical morphology with a wide size distribution (diameter size 1-12 µm). Furthermore, these composite microspheres possess an inverse bicontinuous cubic mesostructure (double diamond, Pn3[combining macron]m) with Al3+-based gel buried in the PEO-b-PMMA matrix in the form of two intertwined but disconnected networks. After a simple calcination at 900 °C in air, the structure of the resultant mesoporous alumina changes to a relatively low symmetry (shifted double diamond, Fd3[combining macron]m), ascribed to the shifting of the two alumina networks due to loss of the templates. Meanwhile, the unit cell size of the alumina mesostructure decreases from ∼131 to ∼95 nm. The obtained ordered mesoporous alumina products retain the spherical morphology and possess ultra-large mesopores (∼72.8 nm), columnar frameworks composed of γ-alumina nanocrystalline particles (crystal size of ∼15 nm) and high thermal stability (up to 900 °C). As a support of Au nanoparticles, the formed Au/mesoporous γ-alumina composite catalysts have been used in the catalytic reduction of 4-nitrophenol with a high kinetic constant k of 0.0888 min-1, implying promising potential as a catalyst support.

18.
PLoS One ; 13(8): e0201294, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30091982

RESUMEN

Drosophila suzukii or spotted wing Drosophila is an economically important pest which can have a devastating impact on soft and stone fruit industries. Biological pesticides are being sought as alternatives to synthetic chemicals to control this invasive pest, but many are subject to degradation either in the environment or in the insect gut and as a result require protection. In this study we identified a sharp change in pH of the adult midgut from neutral to acidic (pH <3), which we then exploited to develop poly(2-vinylpyridine) (P2VP) microcapsules that respond to the change in midgut pH by dissolution and release of their cargo for uptake into the insect. First, we used labelled solid poly(methyl methacrylate) (PMMA) particles to show that microcapsules with a diameter less than 15 µm are readily ingested by the adult insect. To encapsulate water-soluble biological species in an aqueous continuous phase, a multiple emulsion template was used as a precursor for the synthesis of pH-responsive P2VP microcapsules with a fluorescent (FITC-dextran) cargo. The water-soluble agent was initially separated from the aqueous continuous phase by an oil barrier, which was subsequently polymerised. The P2VP microcapsules were stable at pH > 6, but underwent rapid dissolution at pH < 4.2. In vivo studies showed that the natural acidity of the midgut of D. suzukii also induced the breakdown of the responsive P2VP microcapsules to release FITC-dextran which was taken up into the body of the insect and accumulated in the renal tubules.


Asunto(s)
Agentes de Control Biológico/administración & dosificación , Protección de Cultivos/métodos , Drosophila/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Control de Insectos/métodos , Animales , Cápsulas , Femenino , Frutas , Concentración de Iones de Hidrógeno , Masculino , Microtecnología , Polimetil Metacrilato/química
19.
J Am Chem Soc ; 140(31): 10009-10015, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29995403

RESUMEN

Like surfactants with tunable hydrocarbon chain length, Janus nanoparticles also possess the ability to stabilize emulsions. The volume ratio between the hydrophilic and hydrophobic domains in a single Janus nanoparticle is very important for the stabilization of emulsions, which is still a great challenge. Herein, dual-mesoporous Fe3O4@mC&mSiO2 Janus nanoparticles with spatial isolation of hydrophobic carbon and hydrophilic silica at the single-particle level have successfully been synthesized for the first time by using a novel surface-charge-mediated selective encapsulation approach. The obtained dual-mesoporous Fe3O4@mC&mSiO2 Janus nanoparticles are made up of a pure one-dimensional mesoporous SiO2 nanorod with tunable length (50-400 nm), ∼100 nm wide and ∼2.7 nm mesopores and a closely connected mesoporous Fe3O4@mC magnetic nanosphere (∼150 nm diameter, ∼10 nm mesopores). As a magnetic "solid amphiphilic surfactant", the hydrophilic/hydrophobic ratio can be precisely adjusted by varying the volume ratio between silica and carbon domains, endowing the Janus nanoparticles surfactant-like emulsion stabilization ability and recyclability under a magnetic field. Owing to the total spatial separation of carbon and silica, the Janus nanoparticles with an optimized hydrophilic/hydrophobic ratio show spectacular emulsion stabilizing ability, which is crucial for improving the biphasic catalysis efficiency. By selectively anchoring catalytic active sites into different domains, the fabricated Janus nanoparticles show outstanding performances in biphasic reduction of 4-nitroanisole with 100% conversion efficiency and 700 h-1 high turnover frequency for biphasic cascade synthesis of cinnamic acid.

20.
Angew Chem Int Ed Engl ; 57(10): 2611-2615, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29336520

RESUMEN

A near-infrared (NIR) induced decomposable polymer nanocapsule is demonstrated. The nanocapsules are fabricated based on layer-by-layer co-assembly of azobenzene functionalized polymers and up/downconversion nanoparticles (U/DCNPs). When the nanocapsules are exposed to 980 nm light, ultraviolet/visible photons emitted by the U/DCNPs can trigger the photoisomerization of azobenzene groups in the framework. The nanocapsules could decompose from large-sized nanocapsule to small U/DCNPs. Owing to their optimized original size (ca. 180 nm), the nanocapsules can effectively avoid biological barriers, provide a long blood circulation (ca. 5 h, half-life time) and achieve four-fold tumor accumulation. It can fast eliminate from tumor within one hour and release the loaded drugs for chemotherapy after NIR-induced dissociation from initial 180 nm capsules to small 20 nm U/DCNPs.


Asunto(s)
Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Glioma/tratamiento farmacológico , Nanocápsulas/química , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Sistema Nervioso Central/química , Neoplasias del Sistema Nervioso Central/patología , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Glioma/química , Glioma/patología , Humanos , Rayos Infrarrojos , Ratones , Ratones Desnudos , Imagen Óptica , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA