Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(36): 32569-32576, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120017

RESUMEN

Tactile sensors are widely used in the electronic industry. In the following research work, we proposed a tactile sensor based on indium zinc oxide (IZO) electrodes and used neutrosophic statistics to analyze the capacitance and resistance of the tactile sensor. The tactile sensor was fabricated by depositing the IZO electrodes on a polycarbonate substrate (a thin layer). The IZO was characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible (UV-vis) spectroscopy techniques. The sensor's electrical properties were characterized using an LCR meter, i.e., capacitance and resistance were measured in intervals with respect to changes in the applied force on the sensor at 1 kHz operational frequency. The sensor expressed high sensitivity with quick response and recovery times. The sensor also expressed long-term stability. For the analysis of capacitance and resistance, two statistical approaches, i.e., classical and neutrosophic approaches, were applied, and the better analysis approach for the sensor was found.

2.
Front Nutr ; 9: 799375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360700

RESUMEN

In this paper, a new trimmed regression model under the neutrosophic environment is introduced. The mathematical model of the new regression model along with its neutrosophic form is given. The methods to find the error sum of square and trended values are also given. The trimmed neutrosophic correlation is also introduced in the paper. The proposed trimmed regression is applied to prostate cancer. From the analysis, it is concluded that the proposed model provides the minimum error sum of square as compared to the existing regression model under neutrosophic statistics. It is found that the proposed model is quite effective to forecast prostate cancer patients under an indeterminacy setting.

3.
J Med Virol ; 94(4): 1592-1605, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34877691

RESUMEN

The COVID-19 pandemic has appeared as the predominant disease of the 21st century at the end of 2019 and was a drastic start with thousands of casualties and the COVID-19 victims in 2020. Due to the drastic effect, COVID-19 scientists are trying to work on pandemic diseases and Governments are interested in the development of methodologies that will minimize the losses and speed up the process of cure by providing vaccines and treatment for such pandemics. The development of a new vaccine for any pandemic requires long in vitro and in vivo trials to use. Thus the strategies require understanding how the pandemic is spreading in terms of affected cases and casualties occurring from this disease, here we developed a forecasting model that can predict the no of cases and deaths due to pandemic and that can help the researcher, government, and other stakeholders to devise their strategies so that the damages can be minimized. This model can also be used for the judicial distribution of resources as it provides the estimates of the number of casualties and number of deaths with high accuracy, Government and policymakers on the basis of forecasted value can plan in a better way. The model efficiency is discussed on the basis of the available dataset of John Hopkins University repository in the period when the disease was first reported in the six countries till the mid of May 2020, the model was developed on the basis of this data, and then it is tested by forecasting the no of deaths and cases for next 7 days, where the proposed strategy provided excellent forecasting. The forecast models are developed for six countries including Pakistan, India, Afghanistan, Iran, Italy, and China using polynomial regression of degrees 3-5. But the models are analyzed up to the 6th-degree and the suitable models are selected based on higher adjusted R-square (R2 ) and lower root-mean-square error and the mean absolute percentage error (MAPE). The values of R2 are greater than 99% for all countries other than China whereas for China this R2 was 97%. The high values of R2 and Low value of MAPE statistics increase the validity of proposed models to forecast the total no cases and total no of deaths in all countries. Iran, Italy, and Afghanistan also show a mild decreasing trend but the number of cases is far higher than the decrease percentage. Although India is expected to have a consistent result, more or less it depicts some other biasing factors which should be figured out in separate research.


Asunto(s)
Modelos Epidemiológicos , Predicción/métodos , Pandemias , Algoritmos , COVID-19/epidemiología , COVID-19/mortalidad , COVID-19/prevención & control , Humanos , Modelos Estadísticos , Mortalidad/tendencias , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Prevalencia , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...