Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(32): 18102-18113, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32760990

RESUMEN

Ionic liquids and plastic crystals based on pyrrolidinium cations are recognised for their advantageous properties such as high conductivity, low viscosity, and good electrochemical and thermal stability. The pyrrolidinium ring can be substituted with symmetric or asymmetric alkyl chain substituents to form a range of ionic liquids or plastic crystals depending on the anion. However, reports into the use of branched alkyl chains and how this influences the material properties are limited. Here, we report the synthesis of six salts - ionic liquids and organic ionic plastic crystals - where the typically used linear propyl chain substituent is replaced by the branched alternative, isopropyl, to form the cation [C(i3)mpyr]+, in combination with six different anions: dicyanamide, (fluorosulfonyl)(trifluoromethanesulfonyl)imide, bis(trifluoromethanesulfonyl)imide, bis(fluorosulfonyl)imide, tetrafluoroborate and hexafluorophosphate. The thermal and transport properties of these salts are compared to those of the analogous N-propyl-N-methylpyrrolidinium and N,N-diethylpyrrolidinium-based salts. Finally, a high lithium salt content ionic liquid electrolyte based on the bis(fluorosulfonyl)imide salt was developed. This electrolyte showed high coulombic efficiencies of lithium plating/stripping and high lithium ion transference number, making it a strong candidate for use in lithium metal batteries.

2.
Phys Chem Chem Phys ; 21(23): 12288-12300, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31139779

RESUMEN

The synthesis and characterisation of new solid-state electrolytes is a key step in advancing the development of safer and more reliable electrochemical energy storage technologies. Organic ionic plastic crystals (OIPCs) are an increasingly promising class of material for application in devices such as lithium or sodium metal batteries as they can support high ionic conductivity, with good electrochemical and thermal stability. However, the choice of OIPC-forming ions is still relatively limited. Furthermore, understanding of the influence of different cations and anions on the thermal, structural and transport properties of these materials is still in its infancy. Here we report the synthesis and in-depth characterisation of a range of new OIPCs utilising the hexamethylguanidinium cation ([HMG]) with five different anions. The thermal, structural, transport properties and free volume in the different salts have been investigated. The free volume within the salts has been investigated by positron annihilation lifetime spectroscopy, and the single crystal and powder X-ray diffraction analysis of [HMG] bis(trifluoromethanesulfonyl)imide ([TFSI]) in phase I and II, [HMG] hexafluorophosphate ([PF6]) and [HMG] tetrafluoroborate ([HMG][BF4]) are reported. The HMG cation can exhibit significant disorder, which is advantageous for plasticity and future use of these materials as high ionic conductivity matrices. The bis(fluorosulfonyl)imide salt, [HMG][FSI], is identified as particularly promising for use as an electrolyte, with good electrochemical stability and soft mechanical properties. The findings introduce a range of new materials to the solid-state electrolyte arena, while the insights into the physico-chemical relationships in these materials will be of importance for the future development and understanding of other ionic electrolytes.

3.
Chem Commun (Camb) ; 54(29): 3660-3663, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29578230

RESUMEN

Contrary to the accepted wisdom that avoids cation symmetry for the sake of optimum electrolyte properties, we reveal outstanding behaviour for the diethylpyrrolidinium cation ([C2epyr]), in combination with the bis(fluorosulfonyl)imide (FSI) anion and Li[FSI]. The equimolar [C2epyr][Li][FSI]2 is a liquid with high conductivity, high Li transference number and >90% lithium metal cycling efficiency. The high level of performance for these electrolytes invites consideration of a new class of electrolytes for lithium batteries.

4.
Adv Mater ; 29(12)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28121372

RESUMEN

Continuously operating thermo-electrochemical cells (thermocells) are of interest for harvesting low-grade waste thermal energy because of their potentially low cost compared with conventional thermoelectrics. Pt-free thermocells devised here provide an output power of 12 W m-2 for an interelectrode temperature difference (ΔT) of 81 °C, which is sixfold higher power than previously reported for planar thermocells operating at ambient pressure.

5.
Faraday Discuss ; 190: 205-18, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27200437

RESUMEN

Increasing the application of technologies for harvesting waste heat could make a significant contribution to sustainable energy production. Thermoelectrochemical cells are one such emerging technology, where the thermal response of a redox couple in an electrolyte is used to generate a potential difference across a cell when a temperature gradient exists. The unique physical properties of ionic liquids make them ideal for application as electrolytes in these devices. One of the keys to utilizing these media in efficient thermoelectrochemical cells is achieving high Seebeck coefficients, Se: the thermodynamic quantity that determines the magnitude of the voltage achieved per unit temperature difference. Here, we report the Se and cell performance of a cobalt-based redox couple in a range of different ionic liquids, to investigate the influence of the nature of the IL on the thermodynamics and cell performance of the redox system. The results reported include the highest Se to-date for an IL-based electrolyte. The effect of diluting the different ILs with propylene carbonate is also reported, which results in a significant increase in the output powers and current densities of the device.

6.
Phys Chem Chem Phys ; 18(3): 1404-10, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26348719

RESUMEN

Thermoelectrochemical cells are increasingly promising devices for harvesting waste heat, offering an alternative to the traditional semiconductor-based design. Advancement of these devices relies on new redox couple/electrolyte systems and an understanding of the interplay between the different factors that dictate device performance. The Seebeck coefficient (Se) of the redox couple in the electrolyte gives the potential difference achievable for a given temperature gradient across the device. Prior work has shown that a cobalt bipyridyl redox couple in ionic liquids (ILs) displays high Seebeck coefficients, but the thermoelectrochemical cell performance was limited by mass transport. Here we present the Se and thermoelectrochemical power generation performance of the cobalt couple in novel mixed IL/molecular solvent electrolyte systems. The highest power density of 880 mW m(-2), at a ΔT of 70 °C, was achieved with a 3 : 1 (v/v) MPN-[C2mim][B(CN)4] electrolyte combination. The significant power enhancement compared to the single solvent or IL systems results from a combination of superior ionic conductivity and higher diffusion coefficients, shown by electrochemical analysis of the different electrolytes. This is the highest power output achieved to-date for a thermoelectrochemical cell utilising a high boiling point redox electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...